**ABSTRACT**

The road to productivity can negatively impact performance at work. This study differentiates how various modes of commuting influence punctuality and energy levels at work and school.

The data for this study come from the 2013 McGill Commuter Survey, in which students, staff and faculty described their typical commuting experience to McGill University.

Ten multilevel mixed-effects logistic regressions are used to determine the factors that impact:
1) a commuter’s feeling of being energized when he or she arrives at work or school; and
2) his or her punctuality.

**SURVEY DATA**

The data used for this study are derived from the 2013 McGill Commuter Survey, which include:
- detailed descriptions of typical commutes
- origins and destinations
- duration of travel
- satisfaction with service quality
- mode of transportation
- socio-demographic information
- residential selection criteria
- travel preferences
- personal attitudes toward the commute

This study uses multilevel mixed-effects logistic regressions to determine which factors influence a commuter’s energy level at work and punctuality.

Our data includes a total of 3068 individuals and 6116 observations consisting of 3062 trips on a warm and dry day, and 3051 trips on a cold snowy day.

**ANALYSIS**

Odds ratios are displayed for the factors that impact a commuter’s feeling of being energized and his or her punctuality.

**THEORY OF PRODUCITY**

An analysis of commuters’ punctuality and energy levels

**METHODOLOGY**

*Similar factors have significant effects on the odds of a commuter feeling energized and being punctual.*

- The impact of commuting on both energy at work and punctuality is significantly determined by the mode used and the weather conditions.
- Mode satisfaction improves the odds of an individual feeling energized, and is also found to be associated with increased odds of punctuality.
- It may be valuable for schools and employers to encourage the habit of commuting by bicycle.
- Cyclists have the highest odds of being energized and punctual.
- Drivers have the lowest odds of feeling energized at work and the highest odds of arriving late to work.
- It would be beneficial to develop policies aimed at improving the safety of cyclists in traffic.
- Transit agencies should prioritize the improvement of service accessibility and reliability.
- The odds of a transit user feeling energized are impacted by the time it takes to reach the transit station or stop, as well as the waiting time.

**POLICIES & CONCLUSION**

**ACKNOWLEDGMENTS**

We would like to thank Kathleen Ng and Brian Karasick, from the McGill Office of Sustainability, for their feedback and guidance at various stages of this project. Special thanks to Daniel Schwartz from IT Customer Services for his assistance in developing the online survey and managing the distribution of the survey to the McGill community. We also gratefully acknowledge the financial support received from the Social Sciences and Humanities Research Council (SSHRC) and the Natural Sciences and Engineering Research Council of Canada (NSERC).

**THE ROADS TO PRODUCTIVITY**

An analysis of commuters’ punctuality and energy levels

**SURVEY DATA**

The data used for this study are derived from the 2013 McGill Commuter Survey, which include:
- detailed descriptions of typical commutes
- origins and destinations
- duration of travel
- satisfaction with service quality
- mode of transportation
- socio-demographic information
- residential selection criteria
- travel preferences
- personal attitudes toward the commute

This study uses multilevel mixed-effects logistic regressions to determine which factors influence a commuter’s energy level at work and punctuality.

Our data includes a total of 3068 individuals and 6116 observations consisting of 3062 trips on a warm and dry day, and 3051 trips on a cold snowy day.

**ANALYSIS**

Odds ratios are displayed for the factors that impact a commuter’s feeling of being energized and his or her punctuality.

**POLICIES & CONCLUSION**

**ACKNOWLEDGMENTS**

We would like to thank Kathleen Ng and Brian Karasick, from the McGill Office of Sustainability, for their feedback and guidance at various stages of this project. Special thanks to Daniel Schwartz from IT Customer Services for his assistance in developing the online survey and managing the distribution of the survey to the McGill community. We also gratefully acknowledge the financial support received from the Social Sciences and Humanities Research Council (SSHRC) and the Natural Sciences and Engineering Research Council of Canada (NSERC).

**THE ROADS TO PRODUCTIVITY**

An analysis of commuters’ punctuality and energy levels

**SURVEY DATA**

The data used for this study are derived from the 2013 McGill Commuter Survey, which include:
- detailed descriptions of typical commutes
- origins and destinations
- duration of travel
- satisfaction with service quality
- mode of transportation
- socio-demographic information
- residential selection criteria
- travel preferences
- personal attitudes toward the commute

This study uses multilevel mixed-effects logistic regressions to determine which factors influence a commuter’s energy level at work and punctuality.

Our data includes a total of 3068 individuals and 6116 observations consisting of 3062 trips on a warm and dry day, and 3051 trips on a cold snowy day.

**ANALYSIS**

Odds ratios are displayed for the factors that impact a commuter’s feeling of being energized and his or her punctuality.

**THEORY OF PRODUCITY**

An analysis of commuters’ punctuality and energy levels

**METHODOLOGY**

*Similar factors have significant effects on the odds of a commuter feeling energized and being punctual.*

- The impact of commuting on both energy at work and punctuality is significantly determined by the mode used and the weather conditions.
- Mode satisfaction improves the odds of an individual feeling energized, and is also found to be associated with increased odds of punctuality.
- It may be valuable for schools and employers to encourage the habit of commuting by bicycle.
- Cyclists have the highest odds of being energized and punctual.
- Drivers have the lowest odds of feeling energized at work and the highest odds of arriving late to work.
- It would be beneficial to develop policies aimed at improving the safety of cyclists in traffic.
- Transit agencies should prioritize the improvement of service accessibility and reliability.
- The odds of a transit user feeling energized are impacted by the time it takes to reach the transit station or stop, as well as the waiting time.

**POLICIES & CONCLUSION**

**ACKNOWLEDGMENTS**

We would like to thank Kathleen Ng and Brian Karasick, from the McGill Office of Sustainability, for their feedback and guidance at various stages of this project. Special thanks to Daniel Schwartz from IT Customer Services for his assistance in developing the online survey and managing the distribution of the survey to the McGill community. We also gratefully acknowledge the financial support received from the Social Sciences and Humanities Research Council (SSHRC) and the Natural Sciences and Engineering Research Council of Canada (NSERC).

**THE ROADS TO PRODUCTIVITY**

An analysis of commuters’ punctuality and energy levels

**SURVEY DATA**

The data used for this study are derived from the 2013 McGill Commuter Survey, which include:
- detailed descriptions of typical commutes
- origins and destinations
- duration of travel
- satisfaction with service quality
- mode of transportation
- socio-demographic information
- residential selection criteria
- travel preferences
- personal attitudes toward the commute

This study uses multilevel mixed-effects logistic regressions to determine which factors influence a commuter’s energy level at work and punctuality.

Our data includes a total of 3068 individuals and 6116 observations consisting of 3062 trips on a warm and dry day, and 3051 trips on a cold snowy day.

**ANALYSIS**

Odds ratios are displayed for the factors that impact a commuter’s feeling of being energized and his or her punctuality.

**THEORY OF PRODUCITY**

An analysis of commuters’ punctuality and energy levels

**METHODOLOGY**

*Similar factors have significant effects on the odds of a commuter feeling energized and being punctual.*

- The impact of commuting on both energy at work and punctuality is significantly determined by the mode used and the weather conditions.
- Mode satisfaction improves the odds of an individual feeling energized, and is also found to be associated with increased odds of punctuality.
- It may be valuable for schools and employers to encourage the habit of commuting by bicycle.
- Cyclists have the highest odds of being energized and punctual.
- Drivers have the lowest odds of feeling energized at work and the highest odds of arriving late to work.
- It would be beneficial to develop policies aimed at improving the safety of cyclists in traffic.
- Transit agencies should prioritize the improvement of service accessibility and reliability.
- The odds of a transit user feeling energized are impacted by the time it takes to reach the transit station or stop, as well as the waiting time.

**POLICIES & CONCLUSION**

**ACKNOWLEDGMENTS**

We would like to thank Kathleen Ng and Brian Karasick, from the McGill Office of Sustainability, for their feedback and guidance at various stages of this project. Special thanks to Daniel Schwartz from IT Customer Services for his assistance in developing the online survey and managing the distribution of the survey to the McGill community. We also gratefully acknowledge the financial support received from the Social Sciences and Humanities Research Council (SSHRC) and the Natural Sciences and Engineering Research Council of Canada (NSERC).

**THE ROADS TO PRODUCTIVITY**

An analysis of commuters’ punctuality and energy levels

**SURVEY DATA**

The data used for this study are derived from the 2013 McGill Commuter Survey, which include:
- detailed descriptions of typical commutes
- origins and destinations
- duration of travel
- satisfaction with service quality
- mode of transportation
- socio-demographic information
- residential selection criteria
- travel preferences
- personal attitudes toward the commute

This study uses multilevel mixed-effects logistic regressions to determine which factors influence a commuter’s energy level at work and punctuality.

Our data includes a total of 3068 individuals and 6116 observations consisting of 3062 trips on a warm and dry day, and 3051 trips on a cold snowy day.

**ANALYSIS**

Odds ratios are displayed for the factors that impact a commuter’s feeling of being energized and his or her punctuality.

**THEORY OF PRODUCITY**

An analysis of commuters’ punctuality and energy levels

**METHODOLOGY**

*Similar factors have significant effects on the odds of a commuter feeling energized and being punctual.*

- The impact of commuting on both energy at work and punctuality is significantly determined by the mode used and the weather conditions.
- Mode satisfaction improves the odds of an individual feeling energized, and is also found to be associated with increased odds of punctuality.
- It may be valuable for schools and employers to encourage the habit of commuting by bicycle.
- Cyclists have the highest odds of being energized and punctual.
- Drivers have the lowest odds of feeling energized at work and the highest odds of arriving late to work.
- It would be beneficial to develop policies aimed at improving the safety of cyclists in traffic.
- Transit agencies should prioritize the improvement of service accessibility and reliability.
- The odds of a transit user feeling energized are impacted by the time it takes to reach the transit station or stop, as well as the waiting time.
The strain of the daily commute can negatively impact performance at work. This study differentiates how various modes of influence commuters’ punctuality and energy levels at work and school.

The data for this study come from the 2013 McGill Commuter Survey, in which students, staff and faculty described their typical commuting experience to McGill University.

Ten multilevel mixed-effects logistic regressions are used to determine the factors that impact:

1) a commuter’s feeling of being energized when he or she arrives at McGill, grouped by transportation mode and weather.

2) his or her punctuality when he or she arrives at McGill, grouped by transportation mode and weather.

The data used for this study are derived from the Commuter Survey, in which students, staff and faculty.

Students

Professionals

Commuter Survey

Percentage of population sample who feel energized when they arrive at McGill, grouped by transportation mode and weather.

Percentage of population sample who feel that their commutes to McGill negatively impact their punctuality, grouped by transportation mode and weather.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Dry Day</th>
<th>Rainy Day</th>
<th>Snowy Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle</td>
<td>85%</td>
<td>72%</td>
<td>54%</td>
</tr>
<tr>
<td>Drive</td>
<td>32%</td>
<td>21%</td>
<td>9%</td>
</tr>
<tr>
<td>Transit</td>
<td>60%</td>
<td>45%</td>
<td>20%</td>
</tr>
<tr>
<td>Walk</td>
<td>41%</td>
<td>35%</td>
<td>25%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mode</th>
<th>Dry Day</th>
<th>Rainy Day</th>
<th>Snowy Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle</td>
<td>60%</td>
<td>50%</td>
<td>40%</td>
</tr>
<tr>
<td>Drive</td>
<td>60%</td>
<td>50%</td>
<td>40%</td>
</tr>
<tr>
<td>Transit</td>
<td>60%</td>
<td>50%</td>
<td>40%</td>
</tr>
<tr>
<td>Walk</td>
<td>60%</td>
<td>50%</td>
<td>40%</td>
</tr>
</tbody>
</table>

The data used for this study are derived from the Commuter Survey, in which students, staff and faculty.

Students

Professionals

Commuter Survey

Students

Professionals

Commu
<table>
<thead>
<tr>
<th>WEATHER</th>
<th>GENERAL</th>
<th>CYCLE</th>
<th>DRIVE</th>
<th>TRANSIT</th>
<th>WALK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warm, dry day</td>
<td>6.069</td>
<td>4.181</td>
<td>5.726</td>
<td>4.570</td>
<td>5.965</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME</th>
<th>GENERAL</th>
<th>CYCLE</th>
<th>DRIVE</th>
<th>TRANSIT</th>
<th>WALK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional budgeted time (per 10 min)</td>
<td>0.309</td>
<td>0.813</td>
<td>0.292</td>
<td>0.201</td>
<td>0.357</td>
</tr>
<tr>
<td>Additional budgeted time (per 10 min squared)</td>
<td>1.124</td>
<td>–</td>
<td>1.133</td>
<td>1.161</td>
<td>1.246</td>
</tr>
<tr>
<td>I use my commute time productively (high)</td>
<td>3.294</td>
<td>2.477</td>
<td>4.712</td>
<td>3.807</td>
<td>2.726</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PERSONAL ATTRIBUTES</th>
<th>GENERAL</th>
<th>CYCLE</th>
<th>DRIVE</th>
<th>TRANSIT</th>
<th>WALK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student</td>
<td>0.699</td>
<td>2.267</td>
<td>1.339</td>
<td>0.965</td>
<td>0.235</td>
</tr>
<tr>
<td>Life satisfaction (1-10)</td>
<td>1.301</td>
<td>1.146</td>
<td>1.251</td>
<td>1.274</td>
<td>1.241</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HOME SELECTION</th>
<th>GENERAL</th>
<th>CYCLE</th>
<th>DRIVE</th>
<th>TRANSIT</th>
<th>WALK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Importance of the following factors in selecting current home:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proximity to transit (high)</td>
<td>2.162</td>
<td>2.277</td>
<td>–</td>
<td>2.002</td>
<td>–</td>
</tr>
<tr>
<td>Cost of commuting (high)</td>
<td>–</td>
<td>–</td>
<td>1.732</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Cost of commuting (low)</td>
<td>1.520</td>
<td>–</td>
<td>–</td>
<td>1.713</td>
<td>–</td>
</tr>
<tr>
<td>Not having to drive (high)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>2.025</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SATISFACTION WITH MODE</th>
<th>GENERAL</th>
<th>CYCLE</th>
<th>DRIVE</th>
<th>TRANSIT</th>
<th>WALK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comfort (high)</td>
<td>na</td>
<td>6.456</td>
<td>–</td>
<td>–</td>
<td>6.151</td>
</tr>
<tr>
<td>Safety from traffic (high)</td>
<td>na</td>
<td>2.207</td>
<td>–</td>
<td>na</td>
<td>–</td>
</tr>
<tr>
<td>Safety from traffic (low)</td>
<td>na</td>
<td>–</td>
<td>0.115</td>
<td>na</td>
<td>–</td>
</tr>
<tr>
<td>Length of travel time (high)</td>
<td>na</td>
<td>–</td>
<td>3.430</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>How long it takes to reach the bus stop, metro station or commuter rail station (high)</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>2.103</td>
<td>na</td>
</tr>
<tr>
<td>Reasonable waiting time for the bus, metro or commuter rail (high)</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>2.392</td>
<td>na</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MODE(S) USED</th>
<th>GENERAL</th>
<th>CYCLE</th>
<th>DRIVE</th>
<th>TRANSIT</th>
<th>WALK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compared to: Cycling</td>
<td>v</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Driving</td>
<td>0.092</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Bus</td>
<td>0.152</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Number of bus routes</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>0.562</td>
<td>na</td>
</tr>
<tr>
<td>Metro</td>
<td>0.130</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Number of metro lines</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>0.527</td>
<td>na</td>
</tr>
<tr>
<td>Commuter rail</td>
<td>0.100</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Number of commuter rail lines</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>0.493</td>
<td>na</td>
</tr>
<tr>
<td>Walking</td>
<td>0.258</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MODE(S) USED</th>
<th>GENERAL</th>
<th>CYCLE</th>
<th>DRIVE</th>
<th>TRANSIT</th>
<th>WALK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>0.090</td>
<td>0.065</td>
<td>0.006</td>
<td>0.005</td>
<td>0.015</td>
</tr>
</tbody>
</table>

| n             | 6116    | 610    | 914    | 3058    | 1534  |
| Intraclass correlation coefficient | 0.712  | 0.720  | 0.764  | 0.789   | 0.700 |
**WEATHER**

<table>
<thead>
<tr>
<th></th>
<th>GENERAL</th>
<th>CYCLE</th>
<th>DRIVE</th>
<th>TRANSIT</th>
<th>WALK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warm, dry day</td>
<td>6.069</td>
<td>4.181</td>
<td>5.726</td>
<td>4.570</td>
<td>5.965</td>
</tr>
</tbody>
</table>

**TIME**

<table>
<thead>
<tr>
<th></th>
<th>GENERAL</th>
<th>CYCLE</th>
<th>DRIVE</th>
<th>TRANSIT</th>
<th>WALK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional budgeted time (per 10 min)</td>
<td>0.309</td>
<td>0.813</td>
<td>0.292</td>
<td>0.201</td>
<td>0.357</td>
</tr>
<tr>
<td>Additional budgeted time (per 10 min squared)</td>
<td>1.124</td>
<td>1.133</td>
<td>1.161</td>
<td>1.246</td>
<td></td>
</tr>
<tr>
<td>I use my commute time productively (high)</td>
<td>3.294</td>
<td>2.477</td>
<td>4.712</td>
<td>3.807</td>
<td>2.726</td>
</tr>
</tbody>
</table>

**PERSONAL ATTRIBUTES**

<table>
<thead>
<tr>
<th></th>
<th>GENERAL</th>
<th>CYCLE</th>
<th>DRIVE</th>
<th>TRANSIT</th>
<th>WALK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student</td>
<td>0.699</td>
<td>2.267</td>
<td>1.339</td>
<td>0.965</td>
<td>0.235</td>
</tr>
<tr>
<td>Life satisfaction (1-10)</td>
<td>1.301</td>
<td>1.146</td>
<td>1.251</td>
<td>1.274</td>
<td>1.241</td>
</tr>
</tbody>
</table>

**HOME SELECTION**

Importance of the following factors in selecting current home:

<table>
<thead>
<tr>
<th>Factor</th>
<th>GENERAL</th>
<th>CYCLE</th>
<th>DRIVE</th>
<th>TRANSIT</th>
<th>WALK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proximity to transit (high)</td>
<td>2.162</td>
<td>2.277</td>
<td>2.002</td>
<td>2.002</td>
<td></td>
</tr>
<tr>
<td>Cost of commuting (high)</td>
<td>2.002</td>
<td>na</td>
<td></td>
<td></td>
<td>2.025</td>
</tr>
<tr>
<td>Cost of commuting (low)</td>
<td>2.002</td>
<td>na</td>
<td></td>
<td></td>
<td>2.025</td>
</tr>
<tr>
<td>Not having to drive (high)</td>
<td>2.002</td>
<td>na</td>
<td></td>
<td></td>
<td>2.025</td>
</tr>
</tbody>
</table>

**SATISFACTION WITH MODE**

<table>
<thead>
<tr>
<th>Factor</th>
<th>GENERAL</th>
<th>CYCLE</th>
<th>DRIVE</th>
<th>TRANSIT</th>
<th>WALK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comfort (high)</td>
<td>na</td>
<td>6.456</td>
<td>2.002</td>
<td>2.002</td>
<td>6.151</td>
</tr>
<tr>
<td>Safety from traffic (high)</td>
<td>na</td>
<td>2.207</td>
<td>na</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>Safety from traffic (low)</td>
<td>na</td>
<td></td>
<td></td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>Length of travel time (high)</td>
<td>na</td>
<td>3.430</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>How long it takes to reach the bus stop, metro station or commuter rail station (high)</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>2.103</td>
<td>na</td>
</tr>
<tr>
<td>Reasonable waiting time for the bus, metro or commuter rail (high)</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>2.392</td>
<td>na</td>
</tr>
</tbody>
</table>

**MODE(S) USED**

<table>
<thead>
<tr>
<th>Compared to:</th>
<th>GENERAL</th>
<th>CYCLE</th>
<th>DRIVE</th>
<th>TRANSIT</th>
<th>WALK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycling</td>
<td>v</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Driving</td>
<td>0.092</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Bus</td>
<td>0.152</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Number of bus routes</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>0.562</td>
<td>na</td>
</tr>
<tr>
<td>Metro</td>
<td>0.130</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Number of metro lines</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>0.527</td>
<td>na</td>
</tr>
<tr>
<td>Commuter rail</td>
<td>0.100</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Number of commuter rail lines</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>0.493</td>
<td>na</td>
</tr>
<tr>
<td>Walking</td>
<td>0.258</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constant</th>
<th>GENERAL</th>
<th>CYCLE</th>
<th>DRIVE</th>
<th>TRANSIT</th>
<th>WALK</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.090</td>
<td>0.065</td>
<td>0.006</td>
<td>0.005</td>
<td>0.015</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>6116</th>
<th>610</th>
<th>914</th>
<th>3058</th>
<th>1534</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intraclass correlation coefficient</td>
<td>0.712</td>
<td>0.720</td>
<td>0.764</td>
<td>0.789</td>
<td>0.700</td>
</tr>
</tbody>
</table>