Automatic Vehicle Location (AVL), Automatic Passenger Counters (APC), and fare box payments data have
been heavily used to generate dwell time models with been heavily used to generate dwell time models with
the goal of recommending improvements in efficiency and reliability of bus transit systems.

Automatic data collection methods may result in a loss of detail regarding the dynamics of passenger activity, passenger activity time.

The puspose is: to estimate how accurately AVL/APC and fare box data are capturing the time associated with passenger activity
The results reveal an overestimation in the passenger activity component of dwell time, which is mainly
attributed to excess dwell time that AVL/APC and fare box payment generally do not capture.

CONTEXT

Elements of dwell time

Based on previous research a typical dwell time model is as follows:

Dwell time $(s)=f$ (Boardings, alightings, total
passenger activity \wedge 2, passenger load passenger activit^^2, passenger load, friction,
direction, time of day, lift usage, stop location, direction, time of day, lift usage, stop lo
weather conditions, fare payment method)

Dwell time models
Six models are employed to compare estimates of manual observations of dwell time to estimates generated from models using data similar to what AVL/APC and fare box reports. Models 1-3 report total boardings, and Models $4-6$ report boardings by fare payment type
odels 1 \& 4 : typical AVL/APC data
Models $2 \& 5$: controls for amount of excess dwell time Models $3 \& 6$: considers encumbered passengers boarding

DWELL TIME MODELS

Variobe				Expenceamosel			\%poneded Mosel				On average each passenger boarding adds 4.3 seconds to the total dwell time.
	Cost	25\%	975\%	Coot	255\%	97,5\%	Coet	25\% 975\%			
			0.98	13.33°		4.57		2.05 4.46			Each passenger alighting adds 2.1 seconds
	${ }_{2.143^{\circ}}^{4}$		${ }_{4}^{8.81}{ }_{4}^{4.8}$		${ }^{1.05}$	203 0.98		1.55 1.93 0.56 0.97			the total dwell tim
	0.0110		2.82	.00100	.001	.0.01	-0.0086	-0.01 -.01		\bigcirc	By controling for excess dwell the model
	$\stackrel{\text { Na }}{\text { No6 }}$	N4	N0.18	${ }^{0.980^{\circ}}$	0.94 0.16	0.98	${ }^{0.96^{\circ}}$	0.94 0.0 .98 0.168 0.48	\%		lower time estimates of boardings (1.8 sids
Earatom	1.19	. 3.96	1.58		.1.62	0.10		$\begin{array}{lll}1.67 & 0.00\end{array}$			seonds p
am	$4.45{ }^{\circ}$	7.81	-1.29	1.070	. 172	0.31		$\begin{array}{ll}1.74 & 0.23\end{array}$			
	${ }_{\text {cois }}^{0.49}$		3.20 3.42	${ }^{0.17}$.098 .641 .48	${ }^{1.32}$	${ }_{\text {a }}^{0.14}$	-0.97 .574 .0 .25 0.71		0	Encumbered passenger boardi
Escombeced Pesesenger	na	Na	NA	-	Na	N	9.19°	${ }_{684} \quad 11.54$			seconds to the total dwell time.
Staned inerestion	5.52°	250	${ }^{8.54}$.670	0.72	2.6	42°	0.51			
							45				

DISCUSSION

Main Findings

- The traditional model using data similar to what AVL/APC reports overestimated the additional time of the first passenger boarding by approximately 2.5
- Overestimation of time required for passenger activity was a result of
captured by AVL/APC data
- The manual data collection study allowed us to capture details regarding the dynamics of passenger activity, details that are not currently well captured by AVL/APC and fare box
data.

Recommendation

- To improve AVL/APC data collection, the time stamp of the last passenger boarding recorded by the APC activity. This information, when combined with the door closing time, can enable transit agencies to identify the amount of excess dwell at every stop and adiust schedules accordingly
- Knowledge of the composition of patronage along a bus route, such as a route serving a high proportion of elderly passengers, can inform schedulers with the required modifications to the schedule.

ACKNOWLEDGEMENTS

We would like to thank Dea van Lierop and Geneviève
Boisioly from the Transportation Research at McGill Sisioly from the Transportation Research at McGil TRAM group for their efforts in the data collection.
his work was supported by
fesearch grants from the Natural research grants from the Natural
Scineces and Engineering Research
Council of Canada as well as the social sciences
Research Council.

