IDENTIFYING THE BIAS: Evaluating the effectiveness of automatic data collection methods in estimating the details of bus dwell time

ABSTRACT

Automatic Vehicle Location (AVL), Automatic Passenger Counters (APC), and fare box payments data have been heavily used to generate dwell time models with the goal of recommending improvements in efficiency and reliability of bus transit systems.

Automatic data collection methods may result in a loss of detail regarding the dynamics of passenger activity, which may bias the estimates associated with dwell or passenger activity time.

The puspose is: to estimate how accurately AVL/APC and fare box data are capturing the time associated with passenger activity.

The results reveal an overestimation in the passenger activity component of dwell time, which is mainly attributed to excess dwell time that AVL/APC and fare box payment generally do not capture.

CONTEXT

Elements of dwell time

Based on previous research a typical dwell time model is as follows:

Dwell time (s) = f (Boardings, alightings, total passenger activity², passenger load, friction, direction, time of day, lift usage, stop location, weather conditions, fare payment method)

Manual observations of bus operations data oral data: Fare payment type:

Tem	po
0	Tim
	to d
0	Tim
	000

Passenger activity:

- O Boardings and alightings
- Stop arrival time

- mobility restriction

Dwell time models payment type.

- Models 1 & 4: typical AVL/APC data Models 2 & 5: controls for amount of excess dwell time
- Models 3 & 6: considers encumbered passengers boarding

DATA & METHODOLOGY

- me from doors open door close (dwell time) ne after doors open to end of passenger activity (passenger activity time) • Excess dwell time
- O Passenger load
- O Passengers boarding with
 - an encumberment or

Cash

- Smart card
- O Magnetic fare card
- O No fare presented (children under 6)

Stop characteristics:

- O Direction of trip
- O Time of day
- Passenger load
- Stop location (e.g. near-side)
- Reserved bus lane
- O Bus shelter

Six models are employed to compare estimates of manual observations of dwell time to estimates generated from models using data similar to what AVL/APC and fare box reports. Models 1-3 report total boardings, and Models 4-6 report boardings by fare

DWELL TIME MODELS

	Traditional Dwell Time			Expanded Model			Expanded Model		
	(Model 1))	(Model 2)			(Model 3)		
Variable	Coef.	2.5%	97.5%	Coef.	2.5%	97.5%	Coef.	2.5%	97.5%
Constant	4.82 ^b	0.84	0.98	3.33ª	2.09	4.57	3.26ª	2.05	4.46
Total Boardings	4.33ª	3.73	8.81	1.84ª	1.65	2.03	1.74ª	1.55	1.93
Total Alightings	2.14ª	1.47	4.93	0.78ª	0.57	0.99	0.76ª	0.56	0.97
Total Passenger Activity ^2	-0.011ª	-0.02	2.82	-0.010ª	-0.01	-0.01	-0.0096ª	-0.01	-0.01
Excess Dwell	NA	NA	NA	0.96ª	0.94	0.98	0.96ª	0.94	0.98
Friction	-0.66 ^b	-1.19	-0.14	0.32ª	0.16	0.49	0.32ª	0.16	0.48
Eastbound Trip	-1.19	-3.96	1.58	-0.76 ^b	-1.62	0.10	-0.83 ^b	-1.67	0.00
AM	-4.55ª	-7.81	-1.29	-0.70	-1.72	0.31	-0.76°	-1.74	0.23
PM (ref= midday)	-0.49	-4.19	3.20	0.17	-0.98	1.32	0.14	-0.97	1.25
Metro Station	26.54°	18.46	34.62	-3.82ª	-6.41	-1.23	-3.23 ^b	-5.74	-0.71
Encumbered Passenger	NA	NA	NA	NA	NA	NA	9.19ª	6.84	11.54
Signalized intersection	5.52ª	2.50	8.54	1.67ª	0.72	2.61	1.42ª	0.51	2.34
Route 121	-1.43	-4.96	2.10	0.45	-0.65	1.54	0.65	-0.42	1.71
	R-Squared 0.52			R-Squared 0.95			R-Squared 0.96		

R-sauared 0.96

R-squared 0.96

Signif. codes: a=p<0.01, b=p<0.05, c=p<0.1

	Traditior	n <mark>al F</mark> are I	Payment	Expande	ed Fare P	ayment	Expande	ed Fare P	ayment
	(Model 4)			(Model 5)			(Model 6)		
	Coef.	2.5%	97.5%	Coef.	2.5%	97.5%	Coef.	2.5%	97.5%
Constant	3.30 °	-0.62	7.21	2.53 °	1.41	3.66	2.50 °	1.40	3.60
Fare payment type									
Smart card	4.71 ª	3.96	5.46	2.50 ª	2.28	2.71	2.42 ª	2.20	2.64
Magnetic card	21.77 °	16.23	27.31	0.42	-1.23	2.06	0.19	-1.42	1.79
No fare presented	4.23*	-0.83	9.28	4.17 °	2.72	5.62	2.50 ª	1.00	4.01
Cash	8.66 ª	2.56	14.76	7.07 ª	5.32	8.82	6.93 ^α	5.22	8.65
Total Alightings	1.73 °	1.05	2.40	0.64 ª	0.45	0.84	0.64 ª	0.45	0.83
Total Rear Door Boardings	1.48 ^b	0.30	2.67	0.03	-0.31	0.37	0.054	-0.28	0.39
Total Passenger Activity ^2	-0.0047 ^b	-0.01	0.00	-0.0047 ª	-0.01	0.00	-0.0047 ª	-0.01	0.00
Friction	-0.51 ^b	-1.03	0.01	0.27 ª	0.12	0.42	0.28 ª	0.13	0.42
Eastbound Trip	-0.87	-3.58	1.83	-0.79 °	-1.57	-0.02	-0.84 ^b	-1.60	-0.08
AM	-3.49 ^b	-6.69	-0.30	-0.66	-1.57	0.26	-0.70	-1.60	0.20
PM (ref= midday)	0.21	-3.41	3.83	0.51	-0.53	1.55	0.53	-0.49	1.54
Metro Station	27.55 °	19.53	35.57	-1.12	-3.49	1.25	-0.74	-3.06	1.58
Encumbered Passenger	NA	NA	NA	NA	NA	NA	7.58 °	5.32	9.85
Signalized intersection	5.48 °	2.53	8.43	1.46 °	0.61	2.31	1.29 °	0.46	2.12
Route 121	-1.04	-4.50	2.41	0.60	-0.39	1.60	0.70	-0.27	1.67
Excess Dwell	NA	NA	NA	0.97 °	0.95	0.99	0.97 ª	0.95	0.99
			- /			•	_		• <i>i</i>

Signif. codes: a=p<0.01, b=p<0.05, c=p<0.1

Emily Grisé Ahmed M. El-Geneidy School of Urban Planning, McGill University

0	On	average	each	pass	enger	boar
	4.3	seconds	to the	total	dwell	time.

- Each passenger alighting adds 2.1 seconds to the total dwell time.
- By controling for excess dwell the model reports lower time estimates of boardings (1.8 seconds per boarding and 0.8 seconds per alighting).
- Encumbered passenger boardings add 9.2 seconds to the total dwell time.

Model 4	 Boarding times by payment type are Smart card boardings add 4.7 Children boarding add 4.2 sec Cash boardings require 8.7 sec Magnetic cards require 21.8 sec
Model 5	 Including the amount of excess dwe reports lower time estimates of bod Smart card boardings add 2.5 s Children boarding add 4.2 seco Cash boardings require 7.1 seco
Model 6	 Accounting for encumbered boarding excess dwell, boarding times are reformed on the seconds per Smart card. 2.5 seconds per children.

O 6.7 seconds per cash.

DISCUSSION

ding adds

re as follows: seconds. onds. onds.

econds.

the model ardings: seconds.

onds.

conds.

gs and educed to:

Main Findings

- O The traditional model using data similar to what AVL/APC reports overestimated the additional time of the first passenger boarding by approximately 2.5 times.
- Overestimation of time required for passenger activity was a result of **excess dwell time** likely captured by AVL/APC data.
- The manual data collection process employed in this study allowed us to capture details regarding the dynamics of passenger activity, details that are not currently well captured by AVL/APC and fare box data.

Recommendations

- To improve AVL/APC data collection, the time stamp of the last passenger boarding recorded by the APC system can be used to identify the end of passenger activity. This information, when combined with the door closing time, can enable transit agencies to identify the amount of excess dwell at every stop and adjust schedules accordingly.
- Knowledge of the composition of patronage along a bus route, such as a route serving a high proportion of elderly passengers, can inform schedulers with the required modifications to the schedule.

ACKNOWLEDGEMENTS

We would like to thank Dea van Lierop and Geneviève Boisjoly from the Transportation Research at McGill (TRAM) group for their efforts in the data collection.

This work was supported by research grants from the Natural Sciences and Engineering Research Council of Canada as well as the Social Sciences and Humanities Research Council.

