Assessing bicycle network performance through directness and connectivity measures: A Montreal, Canada case study

CONTEXT
Over the last two decades, cycling has seen a rise in popularity in North American cities. In this context, many cities are continuously expanding their bicycle networks to promote bicycle use. While a good network should provide direct bicycle routes for cyclists to reach their desired destinations, most network assessments simply measure the length of bicycle facilities in a region.

Building on a set of complementary indicators to account for the directness of bicycle facilities, this study assesses the performance of the bicycle network in Montreal, Canada.

PERFORMANCE INDICATORS
A good network should provide direct bicycle routes for cyclists to reach their desired destination.

- **Bicycle route diversion** compared to the shortest street network distance
- **Presence of bicycle facilities**, measured as the proportion of the route on bicycle facilities

To account for the directness of the bicycle network, two indicators are developed at the route level.

- Bicycle route diversion compared to the shortest street network distance
- Presence of bicycle facilities, measured as the proportion of the route on bicycle facilities

Montreal bicyclists’ route preferences
Based on the 2009 cycling survey, the characteristics of the routes actually taken by cyclists in Montreal are calculated.

Spatial analysis
Most boroughs located on the periphery of the Island have a relatively low presence of bicycle facilities. Some boroughs located in the centre of the Island are characterized by a high presence of bicycle facilities on both north-south and east-west axes. The results suggest that the street network provides car drivers with more direct routes than the bicycle network does for cyclists.

CONCLUSION
Bicycle Network Planning: Multiple, complementary indicators should be used to evaluate the directness of bicycle networks.

ACKNOWLEDGMENTS
The authors would like to thank Gabriel Doremus-Smits and Jacob Larsen for their work on previous cycling surveys in Montreal. Additionally, thanks to David Vellitch for his insightful comments on the paper. Finally, we gratefully acknowledge the financial support received from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Fonds de recherche du Québec–Nature et technologies (FRQNT).