Evaluating methods for measuring daily walking to public transport:

${ }^{1}$ McGill University, ${ }^{2}$ Université de Montréal

Introduction

Quantifying physical activity accumulated through daily
commuting is challenging due to the scarcity of detailed data, especially for public transport trips.

Using Montreal, Canada as a case study, this paper measures and compares an individual's daily amount of walking to and
from public transport in their regular commute to work using two from public transport in their regular commute to work using two
datasets and two methods.

The first method uses urban level detailed origin-destination microdata.
The second method uses open-source data including commuting flows obtained from census data and GTFS
data.

This study is of relevance to professionals from municipalities of all sizes who are wishing to measure the relationship between to detailed travel survey microdata is limited.
DATA

Origin-Destination Microdata Monrea, Canada, OD survey is conducted every five years politaine de Transport (AMT).
$\hat{\mathrm{A}} \dot{\boldsymbol{k}}$ 品 Data includes route details such as bus route(s) used, subway or train station of access and egress, and subway. Our sample consisted of 9,588 public transport trips

Commuting flows
Census data including commuting modes and patterns collected by Statistics Canada at the

CONCLUSIONS

Our results indicated that walking distances estimated using the commuting flows scenario closely resemble actual walking distances derived from origin-destination microdata.

Mean walking distances:
OD microdata scenario: 1007.31 m
Commuting flows scenario: 1034.63 m
Accordingly, the commuting flows method underestimated
average walking distances by only 3%. average walking distances by only 3%
However, the accuracy of the commuting flows method varied depending on the first mode of public transport used for each trip.

Adiustments:
Adidustments:
For commuter train users $\mathbf{4 7 1}$ meters must be added to walking estimates obtained from the commuting flows data,
while negative adiustments are required for subway users (122 meters), cily bus users (366 meters), suburban bus users (516 meters), and peripheral bus users (1186 meters).
Policy implications:
The commuting flows method provides professionals without ccess to detailed travel survey data with a method to accurately use open data to estimate total walking accumulated by public transport users.

This knowledge provides an understanding of baselin setting goals for future public heallth interventions.

 ACKNOWLEDGEMENTS

The authors wish to thank Mr. Gabriel Sicotte of the ARTM for providing the detailed
Montreal OD survey. This work was supported by research grants from the
Natural Sciences and Engineering Research Council of Canada (NSERC) and the Social Sciences and Humanities Research Council (SSHRC).

