Evaluating methods for measuring daily walking to public transport: Balancing accuracy and data availability

INTRODUCTION

Quantifying physical activity accumulated through daily commuting is challenging due to the scarcity of detailed data, especially for public transport trips.

Using Montreal, Canada as a case study, this paper measures and compares an individual's daily amount of walking to and from public transport in their regular commute to work using two datasets and two methods.

The first method uses urban level detailed origin-destination microdata.

The **second method** uses open-source data including commuting flows obtained from census data and GTFS data.

This study is of relevance to professionals from municipalities of all sizes who are wishing to measure the relationship between physical activity and public transport use in areas where access to detailed travel survey microdata is limited.

The Montreal, Canada, OD survey is conducted every five years by the Agence Métropolitaine de Transport (AMT).

Data includes route details such as bus route(s) used, subway or train station of access and egress, and subway.

Our sample consisted of 9,588 public transport trips.

Commuting flows 2

Census data including commuting modes and patterns collected by Statistics Canada at the Census Tract (CT) level.

Our sample consisted of 2,755 commuting flows

Comparing trip characteristics between scenarios

First mode tak Train Subway City bus Suburban bus Peripheral bus Number of tra 0 transfers 1 transfer 2 transfers 3 or more tran **Average daily** Subway City bus Suburban bus Peripheral bus **Proportion of** Train Subway City bus Suburban bus (Peripheral bus

METHODS

	OD microdata scenario	Commuting flows scenario							
ken (home-work trip)	(%)								
	6	1							
	30	27							
	45	51							
(STL and RTL)	14	15							
s (CIT)	5	6							
ansfers taken (home-work trip) (%)									
	41	10							
	37	24							
	19	35							
nsfers	4	31							
y walking distance by first mode taken (m) †									
	4,632	2,932							
	2,255	2,113							
	1,519	2,010							
(STL and RTL)	1,681	2,499							
s (CIT)	2,471	4,410							
individuals meeting recommended 30 minute daily walking target (%)									
	71	58							
	24	18							
	10	17							
(STL and RTL)	13	31							
s (CIT)	32	68							

RESULTS

Multilevel mixed-effect regression modeling

Multilevel mixed-effect regression modeling is employed to:

	MODEL 1					MODEL 2			
Variable	Coeff.	Sig.	95% Con	f. interval	(Coeff.	Sig.	95% Con	f. interval
Male	10.6		-24	45.2					
Age	-2.5	***	-3.9	-1.1					
Medium income (\$20K - 79K)	-18.9		-80.1	42.3					
Low income (< \$20K)	16.6		-21.2	54.3					
Headway of first route used (min)	0.1		-1	1.1					
In vehicle distance (km)	14.1	***	9.8	18.5	1	10.3	***	6.4	14.1
First mode taken (ref = city bus)									
Subway	580.6	***	524.7	636.6	5	580.6	***	531	630.1
Train	1307.5	***	1162.3	1452.7	-	1351.8	***	1254.7	1448.9
Suburban bus	-186.4	***	-295.8	-77		109.7	*	-204.9	-14.5
Peripheral bus	-253.8	**	-428	-79.5		82.0		-216.9	52.8
Commuting flows * First mode: subway						243.5	***	-321.6	-165.5
Commuting flows * First mode: train						836.4	***	-1198.3	-474.6
Commuting flows * First mode: suburban bus					1	150.3	**	56.5	244.2
Commuting flows * First mode: peripheral bus					8	320.4	***	683	957.9
One transfer	-186.4	***	-228.9	-143.2		195.4	***	-233.3	-157.5
Two transfers	-325.7	***	-381.2	-270.2		346.7	***	-394	-299.5
Three or more transfers	-435.9	***	-538.9	-333		399.7	***	-467.9	-331.4
Percent of population with a university degree	-3.5	*	-6.9	-0.1		-3.1	*	-6	-0.2
Population density (1000 km ²)	-10.9		-22.4	0.7		14.5	**	-24	-5
Number of bus stops	-5.7	***	-7.6	-3.8		4.4	***	-5.9	-3
Commuting flows Scenario						365.6	***	316	415.2
Constant	1573	***	1402.5	1743.6	1	1420.8	***	1288.6	1553.1
AIC BIC Observations Log likelihood	1. 1. -:	56,718 56,854 9,549 78,340					198,86 199,01 12,22 -99,41	2 2 20 2	
Groups CT origin CT flow	No. Group 830	s	Intraclass correlation	on I		No. Groups 822 7,377		Intraclass co 0.2 0.5	rrelation
* 95% significance level ** 99% significance level *** 99.9% significance level									

Adjustment table

A sensitivity analysis used to derive an adjustment table for practitioners and researchers who wis use open data to es walking. Adjustmen⁻ values are presented the following table.

Emily Grisé¹, Rania Wasfi², Nancy Ross¹ & Ahmed El-Geneidy¹ ¹McGill University, ²Université de Montréal

1. Uncover the key determinants of daily walking to public transport according to OD microdata - MODEL 1 2. Explore how the two approaches differed in their estimation of walking levels - MODEL 2 Results of the multilevel mixed-effect regression modeling total walking distance

First mode taken	OD microdata scenario walking distance (m)	Commuting flows scenario walking distance (m)	Adjustment (r
Commuter train	2327.83	1856.98	470.85
			(20%)
Subway	1556.60	1678.64	-122.04
			(-8%)
City bus	976.01	1341.57	-365.57
			(-37%)
Suburban bus	866.30	1382.20	-515.91
			(-60%)
Peripheral bus	893.96	2079.96	-1186.00
			(-133%)
	First mode taken Commuter train Subway City bus Suburban bus Peripheral bus	First mode takenOD microdata scenario walking distance (m)Commuter train2327.83Subway1556.60City bus976.01Suburban bus866.30Peripheral bus893.96	First mode takenOD microdata scenario walking distance (m)Commuting flows scenario walking distance (m)Commuter train2327.831856.98Subway1556.601678.64City bus976.011341.57Suburban bus866.301382.20Peripheral bus893.962079.96

CIRRELT WICGill

CONCLUSIONS

Our results indicated that walking distances estimated using the commuting flows scenario closely resemble actual walking distances derived from origin-destination microdata.

Mean walking distances:

OD microdata scenario: 1007.31m Commuting flows scenario: 1034.63 m

Accordingly, the commuting flows method underestimated average walking distances by only 3%.

However, the accuracy of the commuting flows method varied depending on the first mode of public transport used for each trip.

Adjustments:

For commuter train users 471 meters must be added to walking estimates obtained from the commuting flows data, while **negative adjustments are required** for **subway** users (122 meters), city bus users (366 meters), suburban bus users (516 meters), and peripheral bus users (1186 meters).

Policy implications:

The commuting flows method provides professionals without access to detailed travel survey data with a method to accurately use open data to estimate total walking accumulated by public transport users.

This knowledge provides an understanding of **baseline** physical activity levels of a population, which is vital for setting goals for future public health interventions.

ACKNOWLEDGEMENTS

The authors wish to thank Mr. Gabriel Sicotte of the ARTM for providing the detailed Montreal OD survey. This work was supported by research grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Social Sciences and Humanities Research Council (SSHRC).

nent (m) †

0.85 2.04 5.57 5.91 0%) 86.00