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If You Cut It Will They Ride?
Longitudinal Examination of the
Elasticity of Public Transport
Ridership in the Post-Pandemic Era
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Abstract
In the past two years, public transport ridership has declined because of COVID-19 pandemic health measures and new
working from home policies. This decline in ridership has caused major financial stress on public transport agencies around
the world. Several agencies have responded to this financial stress by reducing services. The extent to which these service
cuts will affect transit ridership is unknown because of the changing operational environment in the post-pandemic world.
Our study uses a longitudinal panel data from Montréal, Quebec, Canada, to explore the relationship between route-level
ridership and operational factors over time. We find that public transport ridership demand at the route level is highly elastic
when compared to trip frequency and has become more elastic after the COVID-19 pandemic. Our findings imply that agen-
cies cutting service in the post-pandemic era run a much more significant risk of creating a ‘‘doom spiral,’’ where service
reductions spur greater declines in ridership, forcing further reductions. Demand was found to be most elastic on more fre-
quent routes, so agencies should prioritize maintaining services on their core routes in the post-pandemic era. This study can
be of use to public transit planners and policymakers considering making service changes to attract more riders or trying to
respond to post-COVID-19 financial stress.
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The COVID-19 pandemic has profoundly affected the
way people move around cities, and no mode has suf-
fered more than public transit (1). Transit agencies
across North America have reported major reductions in
ridership in 2020 because of public health concerns and
increases in telework (2). By mid-2023, ridership levels in
the U.S.A. had only recovered to ~70% of pre-pandemic
levels, while those in Canada had recovered to just over
75% (3, 4). Most North American agencies reduced ser-
vice levels in the pandemic’s early months, when
COVID-19 restrictions were strictest (5). By mid-2021,
many had returned to pre-pandemic service levels in the
hopes of luring ridership back (6). The funding to
achieve this began to run out before ridership returned,
and in 2022 many agencies made service cuts in the
hopes of reducing budget deficits caused by lower rider-
ship (7). This has prompted fears of a transit ‘‘doom

spiral’’ (8). In that scenario, a vicious cycle ensues in
which transit agencies cut services, making transit less
convenient, leading to declines in ridership, forcing fur-
ther reductions.

To understand the risk of this doom spiral, we must
understand the relationship between post-pandemic
ridership and service frequency. If demand is very
sensitive—or elastic—then the risk is high, because it
would mean that if transit agencies cut services, they will
suffer a large reduction in ridership. If demand is inelas-
tic, then services could be reduced without greatly
decreasing farebox revenue, making cuts more viable.
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The elasticity of transit demand has been extensively
studied for pre-pandemic ridership, but to our knowledge
no studies have estimated it for post-pandemic periods.
Our study aims to fill this gap through a longitudinal
analysis of bus ridership in Montréal, Quebec, Canada.

Literature Review

Determinants of Public Transport Ridership

Previous research on transit has identified major determi-
nants of ridership. Micro-scale studies have investigated
the likelihood of transit use at the individual level, includ-
ing the impact of socio-demographic characteristics, per-
sonal preferences, and the built environment (9, 10). This
research has identified subgroups who are more likely to
take transit, including recent immigrants, students, and
the unemployed (11, 12). Recent studies have identified
areas that were more likely to see ridership declines dur-
ing the pandemic, including those with more white, edu-
cated, and high-income individuals (13, 14).

Macro-scale studies examine the impact of municipal,
regional, or national phenomena on transit ridership.
These phenomena are generally split into internal and
external factors. Internal factors are those that are under
the control of a transit agency, while external factors
relate to wider economic and political forces that affect
society at large. The literature has identified several
important internal factors. Service levels have been found
to have a positive, significant relationship with ridership
(15–17), while fares have been found to have a negative
relationship (18). Other factors relate to service quality,
including reliability, comfort, and convenience (19–22).

The literature has identified several external factors.
Population and employment rate have been found to
have a statistically significant, positive relationship with
ridership (23). Land use variables, including population
density and parking availability, have been identified as
contributors to ridership (19, 24). Since the pandemic,
rates of telework have been found to have a negative rela-
tionship with transit ridership (2, 25). Researchers have
found mixed results when examining the impact of emer-
ging technologies, such as ride-hailing and bicycle-shar-
ing, on public transit ridership (18, 24, 26). Per capita
rates of auto ownership have a persistently negative
impact (15, 27), while gas prices have only sometimes
been found to be impactful (28–30).

Level of Analysis

Research on ridership occurs at several levels, ranging
from the stop (11, 31, 32), stop-segment (33), and route
levels (16, 22, 34, 35) to the system level (15, 18, 29). Our
study uses panel data to investigate ridership at the route
level. This approach has been previously used to estimate

the impact of COVID-19 on transit demand in the short
term (i.e., up to December 2020) (35). It was used to esti-
mate the pre-COVID-19 relationship between frequency
of bus services and ridership (16). Analyzing transit at
the route level mirrors the behavior of transit agencies,
which often analyze and adjust service at this scale (16),
which can help maximize the relevance of our research to
practice.

The reverse relationship between ridership and fre-
quency is a known challenge in the public transit litera-
ture. Service frequency can influence ridership (by
making transit services more or less attractive), but rider-
ship can also influence service frequency (if agencies
make service changes to adjust to changes in ridership).
Studies have dealt with this challenge in different ways.
One approach is to use two-stage least squares regression
models, in which the first regression is used to predict
transit supply and then this predicted transit supply vari-
able is used to predict ridership (36). Others, including
this paper, have mitigated this endogeneity through the
use of longitudinal panel data (16, 37). As described in
the Methodology section, longitudinal panel models split
the error term into a time-invariant component and a
time-varying component. In our case, this means that
each route is allowed to have its own error term that
does not vary over time. Since the majority of the rider-
ship’s influence on service frequency does not vary over
time, it is expected that this endogeneity will mostly be
contained within this time-invariant term. This limits the
effect of endogeneity on our model’s estimates.

Study Context

Montréal is Canada’s second-largest city, with 4.4million
people living in the greater Montréal area (38). Two mil-
lion people live on the Island of Montréal, the densest
part of the metropolitan region. Transit on the Island of
Montréal is mostly provided by the Société de transport
de Montréal (STM), which, as of December 2022, oper-
ated a network of 225 bus routes and four metro lines
(39) (Figure 1). From 2010 to 2022, a subset of these lines
was defined as 10-Minute Max, which made up a basic
grid of frequent service. There are several other transit
agencies in the region, including Exo, which operates a
commuter rail network connecting the suburbs to the
Island of Montréal.

Annual STM bus ridership decreased by 9.7%
between 2010 and 2019 (40, 41). This decline was not dis-
tributed equally consistently over time; for example, bus
ridership in 2018 was 4% higher than in 2010, before
declining by 13% between 2018 and 2019. To recover
this decline in ridership, STM increased their service fre-
quency by 0.7% between 2017 and 2019 (the period
defined as pre-COVID-19 in our study). The ridership
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changes that occurred in the years before the pandemic
occurred on routes that were different from the routes
that experienced service cuts in the post-COVID-
19period.

During COVID-19, bus ridership dropped to 25% of
pre-pandemic levels in April 2020, before recovering to
90% as of January 2023 (Figure 2). After making cuts
early in the pandemic, STM restored pre-pandemic ser-
vice in 2021, stating: ‘‘for the first time in many years,
supply is not being determined by demand, but by our
moral obligation’’ (42). However, facing a $78million
CAD budget deficit, STM was forced to subsequently
make ‘‘surgical’’ service cuts (43). A significant ridership
recovery occurred in Fall 2022, the first non-summer
period with no public health restrictions since the start of
COVID-19.

Data

Ridership Data

Through an access to information request, ridership data
were obtained from STM in the form of average weekday

unlinked trips for each bus route and metro station. This
study concentrates on changes in bus ridership only. This
data span from January 2010 to January 2023 (inclusive).
STM changes schedules five times a year—mid-January,
mid-March, mid-June, mid-August, and late-October—
to address changes in congestion levels, reliability issues
in schedules, and seasonality. Bus data were provided at
the route level for each of these periods.

Ridership data from January 2020 to March 2022
(inclusive) were excluded from the study sample because
public health restrictions were in place during those peri-
ods (44). Thus, post-COVID-19 data were restricted to
the four consecutive periods between June 2022 and
January 2023 (inclusive). These data were then compared
with ridership from pre-COVID-19 from June 2017 to
January 2018 and from June 2018 to January 2019. As
such, our study consists of all routes (233) in 12 periods,
with the periods starting in June, August, October, and
January each appearing three times in our dataset.

Certain routes were removed from the dataset before
analysis. A total of 20 routes were cancelled or intro-
duced between 2017 and 2023: these were removed. The
study does not examine ridership changes on the system’s
23 night routes (300-series), which run between 2:00 and
5:00 a.m. These routes operate after the metro has
closed, and have an entirely different spatial configura-
tion than daytime routes. All 700+ series routes (13
routes) were excluded as they are designated as shuttle
services, and mostly serve tourist destinations. Eight
routes were removed for miscellaneous reasons: three did
not run during the summer, two had no trips during the
morning peak, one had no ridership data, and two ran
along Boulevard Pie-IX, where a bus rapid transit (BRT)
system opened midway during the study period. This
reduced the dataset from 233 to 169 routes. A separate
case was generated for our 12 periods, resulting in a sam-
ple of 2028 observations.

Internal Variables

STM operation data for each of our 12 periods were
retrieved from archived General Transit Feed
Specification (GTFS) datasets available online (45). A
different GTFS dataset representing each period’s sched-
ule was retrieved for each date. The R package ‘‘tidytran-
sit’’ was used to read the GTFS files into R (46).
Scheduled travel time for each trip was calculated by
subtracting the arrival time at the last stop from the
departure time at the first stop; these were then averaged
to calculate a route’s average scheduled travel time. As a
route may run several different patterns throughout the
day, mean trip distance was calculated for each route.
This was done by finding the length in meters of each
trip by using the ‘‘sf’’ package’s st_distance function (47),

Figure 1. 2022 Société de transport de Montréal (STM) system
map.
Note: CBD = central business district.

Figure 2. Change in average weekday bus ridership and service:
October 2019–January 2023 (inclusive).
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and then averaging these by route. Average trip speed
was calculated by dividing each trip’s travel time (in
hours) by its length (in kilometers). Each of these metrics
were calculated for ‘‘peak trips’’—defined as trips whose
first stop departs between 6 and 9 a.m.

Several dummy variables were generated for each
route. Two variables were created for express routes
(400-series routes) and 10-Minute Max routes. The 10-
Minute Max network consisted of 31 routes in 2017–
2019, then shrank to 8 routes in 2022, before being
scrapped all together in January 2023. The specific routes
labeled as 10-Minute Max for each period were con-
firmed by reviewing archives of STM’s 10-Minute Max
webpage via the Wayback Machine, which displays what
a webpage looked like on a specific date. Routes were
defined as intersecting with the metro and/or commuter
rail systems if they stopped within a 200-m buffer of a
metro or Exo station, respectively. Given that COVID-
19-era trends in telecommuting have prominently
affected central business districts (CBDs), a dummy vari-
able was generated based on whether a bus route inter-
sected with Montréal’s CBD. This was defined as the
area east of Rue Guy, south of Rue Sherbrooke, west of
Rue Saint-Denis, and north of the Saint-Lawrence river.

To control for the link between the transit system’s
operations and land use, the study calculated accessibility
at the route level for each period. In transport literature,
accessibility refers to the ease of reaching destinations
(48); individuals living in high accessibility areas can
reach more activities in a limited time (49). Accessibility
blends the transport system (e.g., the location, frequency,
and speed of the transit network) with land use (e.g., the
number and location of jobs). One of the most frequently
used measures of accessibility is cumulative opportuni-
ties, which scores an area’s accessibility based on how
many jobs can be reached from the area using a given
mode within a predefined travel time threshold. This
measure’s popularity is because of its ease of calculation,
understandability by the public, and reliability against
more complex measures (50, 51). Although accessibility
is typically generated at the system or regional level, we
sought to evaluate accessibility at the route level, using a
method inspired by Albuquerque-Oliveira et al. (52). We
calculated, for each census tract (CT) within 400m of a
given route, the number of jobs that are accessible in
45min using that same route (either directly, or with
transfers to other routes). To aggregate these CT-level
accessibility figures at the route level, we calculated a
weighted average. This average was weighted based on
the number of people from each CT that lived within
400m of that route. The 45-min threshold was chosen as
it is frequently used in transportation planning to mea-
sure regional accessibility (53). This was calculated at 20
times (i.e., at 8:00, 8:03, and until 8:57 a.m.), and then

the median score was selected. This sampling method
allowed us to calculate a more generalizable route acces-
sibility than calculating accessibility at a single point in
time. These estimates were calculated using the detaile-
d_itineraries() function in r5r, an open-source package
for generating multimodal transport routes in R (54).

External Variables

Our study made use of demographic and socioeconomic
data, sourced from Statistics Canada’s 2016 and 2021
censuses. These data points were sourced at the CT level
for the entirety of the Island of Montréal. The following
demographic variables were retrieved: population, popu-
lation density, median household income ($), number of
immigrants who had arrived in Canada in the previous
five years, number of households paying more than 30%
of their income on housing, unemployment rate (%),
work from home (WFH) rate (%), and number of jobs.
For all variables except for number of jobs and WFH
rate, linear interpolation was used to generate the 2017–
2019 variables, and linear extrapolation was used to gen-
erate the 2022–2023 variables. For number of jobs, the
unadjusted 2016 figures were used for all periods. The
2021 job location data are unlikely to be accurate for
2022–2023, because rates of telework changed materially
between 2021 and 2022, as COVID-19 restrictions were
lifted (55). For WFH rate, the unadjusted 2016 value
was used for 2017–2019, because there were no exogen-
ous shocks that would indicate that 2016 figure would
have meaningfully changed for those years. For 2022
and 2023, the unadjusted 2021 figure was used. As WFH
rates in 2022 were lower than 2021, the 2022–2023 WFH
rates represent the percentage of workers in a CT who
have the potential to WFH (because they worked from
home in 2021), rather than the percentage of workers
who were actually working from home at that time.

The demographics of each route were estimated using
an approach used by Diab et al. (16). A 400-m buffer
was generated around each route and intersected with
shapefiles of the 2016 CTs. This buffer was generated
around the entire route, not just the route stops. This
area represents the part of each CT that was in a given
route’s catchment. This area was then divided by the
total area of each CT to calculate the proportion of each
CT in a given route’s catchment. The resulting ratio for
each CT was then used to weight the demographic vari-
ables, so that they could be appropriately averaged or
summed together for each route. This approach has one
major drawback: it assumes CTs are homogenous. This
is a limitation, as areas adjacent to bus routes are likely
to be different than areas outside the bus routes’ 400-m
buffer. However, it was deemed acceptable, as Montréal
has not pursued a specific densification policy around its
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bus routes (in contrast to the city’s Transit-Oriented
Development program around rapid transit stations).

To calculate the impact of bicycle-sharing on each
route, the number of bicycle-sharing trips in each route’s
catchment was calculated. BIXI, the company which
operates bicycle-sharing in Montréal, provides the origin
and date of each of its customers’ trips. For each period
and route, all trips beginning at a station within a 400-m
buffer of the route were counted. This was then divided
by the number of days in that period during which BIXI
was in operation to get the average number of bicycle-
sharing trips per day for each route–period combination.
In addition to these variables, average gas price and min-
imum wage were identified for each period in our sam-
ple. Three seasonal dummy variables were created, for
June, August, and October, as was a dummy variable for
whether COVID-19 had occurred yet. Table 1 shows
summary statistics for the external and internal variables
included in the final model specification, calculated in
October of that year.

Methodology

All non-dummy variables, including the dependent vari-
able ridership, were first transformed into their natural
logarithmic form. This log–log formulation was done to
enable analysis of model results with respect to elastici-
ties, and not to improve model fit. For example, if an
independent variable has a coefficient of 0.2, this implies
that a 10% change in that independent variable would
predict a 2% change in the dependent variable, all else
being equal.

The data were then split into a training sample (75%
of routes) and testing sample (25%). The model would be

developed using the training sample, and then cross-
validated on the testing sample to test the quality of the
model’s predictions and ensure it was not overfitted.
When splitting the full sample into the training sample
and testing sample, a random stratified sampling process
was followed. This ensured that the two samples had
roughly equal percentages of routes that were classified as
‘‘connecting to Exo,’’ ‘‘Express,’’ and ‘‘10-Minute Max.’’

The full set of independent variables was then pared
down by eliminating highly colinear variables. The
Pearson’s correlation coefficient was calculated to iden-
tify the variables with a Pearson’s correlation coefficient
of more than 0.60. Where two variables were highly cor-
related, the variable that was deemed more important
based on expert judgment or theory was retained. Route
length, stops, and population were correlated with aver-
age travel time, and so the former group of variables was
removed. Route speed, jobs, number of households pay-
ing more than 30% for shelter, and density were all cor-
related with route accessibility, and so were removed.
Monthly and single trip fare, minimum wage, gas price,
and the percentage of buses available were all correlated
with the dummy variable for COVID-19, and so these
were removed. The two variables related to bicycle-shar-
ing—total BIXI days and BIXI trips per day—were
highly correlated with seasonal dummies, leading to their
exclusion. To measure how the relationship between the
independent variables and ridership evolved post-
COVID-19, interaction variables were generated. This
was done by multiplying each of the independent vari-
ables with the COVID-19 dummy variables (except for
the seasonal dummy variables).

The data are organized in a longitudinal panel, with
12 repeated observations for each route—one for each
period. Transport researchers have used different

Table 1. Summary Statistics for Variables Included in Final Models

Variable name Short form name 2017 2018 2022

Internal variables
Daily ridership (total) Ridership (total) 837,289 865,290 629,205
Daily ridership (mean) Ridership (mean) 4954 5120 3723
Daily bus trips (mean) Daily trips 100.97 100.72 90.35
Average travel time (min) (mean) Travel time 36.40 36.59 37.38
Accessibility to jobs in 45 min (mean) Accessibility 77,232 77,943 64,672
Route connects to metro (%) (dummy mean) Connects to metro 79.29 79.88 81.66
Route connects to Exo (%) (dummy mean) Connects to Exo 45.56 44.97 36.69
Route intersects CBD (%) (dummy mean) Intersects CBD 13.61 13.61 13.61
Route is 10-Minute Max (%) (dummy mean) 10-Minute Max 17.75 17.75 4.73

External variables
Median household income ($) CAD (mean) Income 59,948 62,550 72,994
Recent immigrant population (mean) Recent immigrants 3254 3140 2719
Unemployment rate (%) (mean) Unemployment rate 9.25 9.51 10.62
Workers with potential to telework (%) (mean) Work from home 9.73 9.73 41.58

Note: CBD = central business district.
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approaches to model transit ridership over time, includ-
ing fixed-effect models (56, 57), random-effect models
(14), and linear mixed-effects models (also called linear
mixed models) (34). A mixed-effects model contains both
fixed and random effects (58, 59). In this model, the fixed
effects are represented by the independent variables’
coefficients. These represent how each independent vari-
able is expected to affect the dependent variable as it
increases or decreases. This model also has two random
effects. Firstly, each route has a different random inter-
cept: this represents the deviation from the model con-
stant that is different for each route (i.e., between-route
variation). The heterogeneity represented by the random
intercept is unique to each route and assumed to be inde-
pendent (i.e., uncorrelated) from the model’s indepen-
dent variables. Secondly, each observation has a random
residual: this represents the deviation from the model
slope that is different for each observation (i.e., within-
route variation).

Mixed-effects models with different explanatory vari-
ables were tested in Stata 16.1. The first model that was
run included all the independent variables that were
retained after the colinear variables were excluded. For
four of these variables, both the variable and the variable
interacted with the COVID-19 dummy were found to be
statistically insignificant. Omitting these variables did
not affect other coefficients’ weights, and so they were
removed. These variables were route accessibility and the
express route dummy. The variables interacting 10-
Minute Max routes and Connects to Metro routes with
COVID-19 were insignificant and were excluded. The
two operations variables included in the first model—
number of daily trips and average travel time—directly
affect route accessibility, and a second model was esti-
mated where route accessibility replaced these two opera-
tions variables. This enabled us to estimate the impact of

accessibility on ridership separately. Besides removing
the two operations variables and their interactions with
the COVID-19 dummy, all the variables included in the
first model were retained.

Sensitivity analyses were run for both models to
understand how predicted daily ridership would change
based on different trip frequencies and route accessibil-
ities, respectively. For both sensitivity analyses, the
means from October 2018 and October 2022 were
inputted into all other variables. For the dummy vari-
ables relating to trip type (e.g., Connects to Metro, 10-
Minute Max), the mode was inputted (e.g., more than
50% of routes connected to the metro, so that variable
was inputted as 1). For the temporal dummy variables,
the month was assumed to be October, and the year dic-
tated whether COVID-19 was inputted as zero or one.
Finally, a validation step was performed, in which the
two models estimated were run on the testing data to
validate their accuracy.

Findings

Summary Statistics

Route-level changes in ridership between October 2018
and October 2022 are shown in Figure 3. Decreases are
most extreme near the CBD and the eastern center, while
ridership is more resilient in the west and north. This
map is very similar to changes in route frequency. Table
2 groups the routes by percentile, based on how their trip
frequency increased or decreased between October 2018
and October 2022. The ‘‘Mean # of October 2018 trips’’
column indicates that reductions in service have been
concentrated in high-frequency routes: the bottom per-
centiles had the highest mean number of trips before the
pandemic. Almost 80% of routes historically identified
as 10-Minute Max routes—theoretically the system’s
most important—were in the bottom 25% percentiles.
The last column demonstrates the high association
between route reductions and ridership decline, with the
routes suffering the greatest service reductions having
the greatest ridership decline.

Model Results

Table 3 shows the results of the two mixed-effects models
that were developed using the natural logarithm of daily
route ridership as the dependent variable. The two mod-
els include the influence of transit operations on rider-
ship in different ways: Model A via the inclusion of daily
weekday trips and average weekday travel time, and
Model B via including accessibility to jobs.

In Model A, daily weekday trips had a statistically
significant positive relationship with ridership, with a
coefficient of 1.30. This suggests that a 10% decrease in

Figure 3. Change in daily Société de transport de Montréal
(STM) bus ridership, by route, between October 2018 and
October 2022.
Note: CBD = central business district.
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Table 2. Summary Statistics, with Routes Grouped by Change in Trip Frequency between October 2018 and October 2022

Percentile—change
in trip frequency

Change in trip frequency from
October 2018 to October 2022

Mean # of October
2018 trips

# of ex-10-Minute
Max routesb

Change in ridership
from October 2018
to October 2022

Top 5% routes with
greatest increase
in frequency

22% 64 0 31%

Top 10% 5% 56 0 29%
Top 25% 2% 74 0 29%
Rest of routesa 24% 82 7 27%
Bottom 25% 218% 155 11 216%
Bottom 10% 224% 198 5 223%
Bottom 5% with greatest decrease 235% 196 7 233%

aRoutes from 25% to 75%.
bRoute 139 was excluded from study because it overlaps with the new bus rapid transit.

Table 3. Model Results

Variable name

A. Trips model B. Accessibility model

Coef. z P . z Coef. z P . z

Internal factors
Daily trips (ln) 1.30 33.9 0.00
Travel time (ln) 0.53 7.2 0.00
Accessibility (ln) 0.11 4.9 0.00
10-Minute Max 0.09 4.4 0.00 0.09 3.9 0.00
Connects to metro 0.19 3.9 0.00 0.14 2.3 0.02
Connects to Exo 0.09 3.2 0.00 0.08 2.3 0.02
Intersects CBD 20.15 21.5 0.14 20.18 20.6 0.56

External factors
Income (ln) 20.11 20.7 0.46 0.48 2.4 0.02
Recent immigrants (ln) 0.19 4.1 0.00 0.22 3.8 0.00
Unemployment rate (ln) 20.51 24.0 0.00 20.61 24.0 0.00
Work from home (ln) 20.07 20.9 0.37 20.02 20.2 0.87
Month of June 20.18 214.3 0.00 20.23 214.9 0.00
Month of August 20.01 20.8 0.43 0.01 0.3 0.73
Month of October 0.00 0.2 0.86 0.02 1.2 0.24
COVID-19 21.17 21.1 0.27 23.28 22.3 0.02

Interactions with COVID-19
Daily trips (ln) 0.21 12.5 0.00
Travel time (ln) 0.20 6.2 0.00
Accessibility (ln) 0.04 2.98 0.00
Connects to Exo 20.07 23.8 0.00 20.05 22.11 0.04
Intersects CBD 20.11 23.3 0.00 20.21 25.42 0.00
Income (ln) 20.14 21.6 0.11 0.23 2.16 0.03
Recent immigrants (ln) 20.11 24.1 0.00 0.02 1.13 0.26
Unemployment rate (ln) 0.64 6.7 0.00 0.31 2.95 0.00
Work from home (ln) 20.12 22.5 0.01 20.26 24.95 0.00
Constant 21.10 20.7 0.51 0.85 0.36 0.72

Log-likelihood 496.77 141.86
AIC 2943.54 2237.71
BIC 2810.11 2114.96
ICC 0.85 0.98
Observations 1536 1536
Number of groups 128 128

Random-effects parameters Estimate 95% CI Estimate 95% CI

SD of constant 0.35 0.30 0.41 1.15 1.01 1.31
SD of residual 0.15 0.14 0.15 0.00 0.16 0.18

Note: CBD = central business district; AIC = Akaike information criterion; BIC = Bayesian information criterion; ICC = intraclass correlation; SD =

standard deviation; CI = confidence interval.
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weekday trips leads to a 13% decrease in ridership, all
else being equal. Daily weekday trips interacting with the
COVID-19 dummy was statistically significant, with a
coefficient of 0.21. This implies that at 10% decrease in
trips post-COVID-19 will decrease ridership by 15.1%—
13.0% + 2.1%. This suggests that demand is more elas-
tic than previously, because ridership post-COVID-19 is
more influenced by trip frequency. Average weekday
travel time was positive and statistically significant both
in its non-interacted form, and when interacted with the
COVID-19 dummy. This suggests that routes with longer
travel time, which typically cover greater distance, attract
more riders by serving a great population. The 10-
Minute Max dummy variable was statistically signifi-
cant, indicating that riders responded positively to the
marketing of certain routes as frequent, even when hold-
ing all other variables constant. When interacted with
the COVID-19 dummy, it was insignificant—although
this may be because the number of 10-Minute Max
routes was materially reduced during COVID-19. Two
variables demonstrate the decline in commuting trips
into the CBD post-COVID-19. Whether a bus route
intersected with the CBD was insignificant pre-COVID-
19, but was significant when interacted with COVID-19.
Connecting to a commuter rail station was positive and
statistically significant in its un-interacted form, but neg-
ative and statistically significant when interacted. Pre-
COVID-19, connecting to an Exo station led to a 9%
increase in ridership, all else equal. The coefficient on the
interacted Connects to Exo variable is 20.07. As such,
connecting an Exo station post-COVID-19 only leads to
a 2% increase in ridership (i.e., 9% 2 7%). This is an
intuitive result: the Exo system suffered from greatly
reduced ridership after COVID-19, as it mostly served
office workers commuting from the suburbs. It is reason-
able that connecting to an Exo station would have a neg-
ligible effect post-COVID-19. Telework’s rising influence
on travel patterns after COVID-19 was demonstrated by
the WFH variable. The coefficient for WFH was always
negative, but only became significant when interacted
with the COVID-19 dummy variable.

In Model B, the two operations variables (trips and
travel time) were replaced with accessibility to jobs.
Accessibility had a positive and statistically significant
relationship with ridership, albeit smaller. Model B sug-
gests that a 10% increase in route accessibility would lead
to a 1.1% increase in ridership, ceteris paribus. However,
the importance of accessibility is largely unchanged since
COVID-19—accessibility interacted with the COVID-19
dummy variable had a very small coefficient (0.04), indi-
cating that increases in accessibility after COVID-19
would have largely the same effect as before. Several vari-
ables’ coefficients differed materially between models. In
Model B, median household income was positively asso-
ciated with ridership in both its interacted and non-
interacted forms, while in Model A it was never signifi-
cant. The relationship between ridership and the number
of recent immigrants interacted with COVID-19 was sur-
prisingly significant and negative in the trips model, but
was insignificant in the accessibility model.

On top of these fixed effects, each model also has ran-
dom effects. As described in the Methodology section,
these consist of a random constant and residuals. For
Model A, the standard deviation of this constant was
0.35 (meaning that the average route’s constant is 6 0.35
points from the overall constant), while for Model B, this
deviation was 1.15.

The intraclass correlation (ICC) is calculated by divid-
ing the between-route variance from the total variance
(between-route and within-route). It articulates what per-
centage of the error term is between-route variance (i.e.,
accounted for by the random intercept) and what is
within-route variance (contained within the residuals).
ICC scores can be used to assess the reliability of the sta-
tistical model, with a threshold of above 0.8 often used
(60). Since Model A has an ICC score of 0.85 and that of
Model B is 0.98, both models clear this threshold, show-
ing high reliability. Model A had materially lower
Akaike information criterion (AIC) scores (2943 com-
pared to 2237), suggesting it fits the data better.

Sensitivity Analyses

Sensitivity analyses were run for both models to under-
stand how predicted daily ridership would change based
on different trip frequencies and route accessibility.
While the model was estimated in log–log form, the
results were transformed into non-log form for plotting
purposes. These two analyses highlight trip frequency
and route accessibility’s different elasticities. Trip fre-
quency is highly elastic—even more so after COVID-
19—such that increasing trip frequency rapidly increases
trip ridership (Figure 4). In contrast, accessibility is quite
inelastic, suggesting that increases in accessibility will
have a diminishing impact (Figure 5). In both cases, the

Figure 4. Sensitivity analysis of ridership and trips.
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intercept for 2022 is lower than that for 2018, suggesting
that a certain level of trip frequency or accessibility in
2022 will achieve a lower ridership as compared to 2018.

Model Validation

To cross-validate the models, both models were run
using the testing data. The mean predicted log of rider-
ship was 7.63 for the trips model, and 7.67 for the acces-
sibility model (compared to an actual mean of 7.74). The
Pearson’s correlation between the predicted and the
actual ridership was calculated for both models. The
trips model was far superior, registering a correlation of
0.95, compared to 0.53 for the accessibility model. The
trips model performed better with respect to the root-
mean-square-error (RMSE), achieving a value of 0.40
compared to 1.05 for the accessibility model.

Discussion and Conclusion

This research examined the relationship between rider-
ship and several operations and socioeconomic variables
to identify the pre- and post-COVID-19 elasticities of
transit demand. Many transit agencies are considering
reducing service because of lower ridership, and so it is
important to understand how the link between opera-
tions and ridership has evolved after the pandemic.

The study found that demand for transit was highly
elastic and had grown more elastic since COVID-19. The
rise of telework may partially explain this increase in elas-
ticity. When faced with a service cut, workers who before
COVID-19 would have been forced to endure a longer
commute might now respond by commuting to the office
less frequently. Rising car ownership, including among
low-income households (61), and increases in active
mode use for non-work purposes (62) may mean that
individuals are more able to switch to a different mode if
the transit route they use suffers a service reduction. This
increase in elasticity has grave consequences for agencies,
as it suggests the risk of a doom spiral is high. If transit
agencies cut services, then they can expect to lose more
riders, worsening their fiscal position. This suggests that
further public funding for transit operations is necessary
to stave off a total collapse of the system.

If this is not possible, then the findings suggest that
agencies should attempt to maintain services on higher
frequency routes and make reductions on less popular
and low-frequency routes while accounting for equity
issues. The study found that a 10% increase in route fre-
quency led to a 15% increase in ridership. As the sensi-
tivity analysis highlights, this exponential relationship
means a reduction from 200 buses a day to 190 will lead
to a greater decrease in ridership than going from 100 to
90. This might not be the case at extreme levels of fre-
quency, because short headways can exacerbate bus
bunching (63) and because shorter waits have diminish-
ing benefits past a certain level. However, in the medium
range, the relationship between frequency and ridership
implies that riders are highly responsive to decreases in
frequency post-COVID-19. This may be because even a
small reduction in frequency for a high-frequency route
can make a material difference in the customer experi-
ence (e.g., by forcing riders to check the schedule where
previously they did not have to, or by subjecting them to
overcrowding) (64). This finding is further supported by
the 10-Minute Max variable being significant: all else
being equal, routes marketed as 10-Minute Max had 9%
more ridership. This implies that consumers are reacting
positively to a branded bus service that promises a super-
ior, more reliable customer experience (21). Our model
implies that if cuts are necessary, agencies should focus
on maintaining services on ‘‘core’’ and branded routes to
maintain ridership levels as much as possible, while con-
sidering the equity implications of such a policy.

The study found that bus routes serving areas with
more recent immigrants had higher ridership pre-
COVID-19 and post-COVID-19. However, this ‘‘immi-
grant ridership boost’’ was lower post-COVID-19. This
may suggest that immigrants were more likely to invest in
alternative modes during the pandemic. It could also
imply that immigrants continued to associate public tran-
sit with increased COVID-19 health risks (and as such
were less likely to use it). Alternatively, it is possible that
the quality of public transit service in immigrant neigh-
borhoods declined disproportionately, and that this
result is accounting for that decrease in quality. This find-
ing suggests that agencies should investigate whether the
customer experience for immigrant riders has uniquely
changed, and remedy this as needed.

The study found a small relationship between accessi-
bility to jobs and ridership. This is a surprising finding,
given the significant literature demonstrating the rela-
tionship between accessibility and transit mode share.
This may be because accessibility is traditionally calcu-
lated as a system-wide measure, rather than a route-level
measure. Further research is required to investigate
whether accessibility has declined in importance since
COVID-19.

Figure 5. Sensitivity analysis of ridership and accessibility.
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Future research may examine how the elasticity of
demand differs between different types of transit (e.g.,
between buses and heavy rail) and between different sub-
groups (e.g., between students and workers). However,
even if certain riders are more inelastic (e.g., captive
riders), agencies should be mindful in making cuts dis-
proportionately in those areas; socially regressive cuts
would undermine transit’s equity objectives.

Future studies could also include additional variables
that might affect transit demand. This includes the
impact of service quality, including reliability (i.e., on-
time performance), which may have become a more
important factor since COVID-19. Studies could also
investigate the significance of changing rates of car own-
ership on transit demand, which was not available for
our level of analysis. Research could also use multiple
dummy variables to characterize the post-COVID-19
time period (rather than just one) to account for
increased pressure over time on employees to return to
in-person work. This could shed light on the impact on
transit ridership of certain employers instituting firmer
return-to-office mandates.
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