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Abstract 

Transport models are decision making tools used to evaluate current and potential 

transport system conditions and to optimize its development. They can evaluate the impact 

of policies, sociodemographic changes, and infrastructure projects on the transport system. 

Large scale transport models, also known as macroscopic transport models, are composed 

of three components. The first component is the supply, which is a digital representation of 

the transport network for all modeled transport modes. The second component is the 

transport demand, representing all the trips that need to be made. The third component is 

the performance, which represents the network conditions when the demand is assigned 

to the transport network, therefore having a significant influence on route choice and traffic 

assignment. Developing these models is limited by the important resources required.  

Recently, global positioning systems (GPS) trajectory data have been collected by GPS-

enabled smartphones, creating large databases of GPS trajectories. This emerging data 

source has the potential to provide high coverage information to different applications such 

as transport modelling. In practice, the ability to extract transport system related variables 

for large networks will reduce model development resources and increase the model 

update frequency and quality. This thesis aims to explore this potential by developing 

methods to extract transport system features from GPS trajectory data. 

First the thesis presents a comprehensive review of work examining the use of GPS data to 

extract road network features. Although some studies have developed methods to extract 

road networks from GPS data, it was found that the level of detail was insufficient from the 
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transport modelling perspective. Studies were mostly focusing on extracting and updating 

road centerlines.   

Second, a reproducible method is proposed to extract road network topology and 

connectivity for modelling purposes. The resulting network model accuracy was greater 

than 95% for road segments compared to the ground truth dataset (Google Maps and 

Streetview). Moreover, extraction accuracy was very high for intersection movements 

except for intersections with very low GPS trajectory sample size. 

Third, a combined GIS-machine learning method is proposed to extract the number of traffic 

lanes, essential in determining road capacity. The number of lanes information was inferred 

with an accuracy of 92% based on the lateral distribution of GPS points with respect to each 

road segment in addition to the sample size variable.  

Fourth, road intersection control type is extracted. The proposed method used nearest 

neighbors’ classifiers technique with intersection level speed and count statistical variables 

to predict intersection control type with an accuracy of 96%. 

Finally, a method is proposed to improve traffic assignment route choice by standardizing 

the extraction of intersection movement delays to improve turn delay modelling in large 

scale transport models. Adjustment factors are proposed based on turning movement and 

road type to be integrated directly into volume delay functions used in transport models.  

In sum, crowd sensed GPS trajectory data is a great source to standardize the extraction of 

road network features and improve transport model development. A combination of GIS 

and machine learning techniques were necessary to process the raw data and extract the 
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necessary information. However, the main limitation of the GPS data used in this research 

was the limited sample size which reduced data extraction locally where the data sample 

size was small or null.
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Résumé 

Les modèles de transport sont des outils d'aide à la décision utilisés pour évaluer les 

conditions actuelles et potentielles du système de transport pour optimiser son 

développement. Ils peuvent évaluer l'impact des politiques, des changements 

sociodémographiques et des projets d'infrastructure. Les modèles de transport à grande 

échelle, macroscopiques, sont composés de trois composantes: l'offre, une représentation 

numérique du réseau de transport pour tous les modes de transport modélisés, la demande 

de transport, représentant l'ensemble des déplacements à effectuer et performance 

représentant les conditions du réseau lorsque la demande est affectée au réseau de 

transport. Cette dernière influence significativement le choix de l'itinéraire et l'affectation 

du trafic. Le développement de ces modèles est limité par les importantes ressources 

nécessaires. 

Récemment, des sources de données de parcours de type système de positionnement par 

satellite (GPS) ont été collectées par des téléphones intelligents équipés par GPS, créant de 

grandes bases de données de parcours GPS. Cette source de données émergente a le 

potentiel de fournir des informations à couverture élevée à différentes applications telles 

que la modélisation des transports. Cette thèse vise à explorer ce potentiel en développant 

des méthodes pour extraire les caractéristiques du système de transport à partir des 

données de parcours GPS. 

Tout d'abord, la thèse présente une revue complète des travaux examinant l'utilisation des 

données GPS pour extraire les éléments du réseau routier. Bien que certaines études aient 

développé des méthodes pour extraire les réseaux routiers à partir des données GPS, il a 



V 
 

été constaté que le niveau de détail était insuffisant du point de vue de la modélisation des 

transports. Les études se concentraient principalement sur l'extraction et la mise à jour du 

réseau routier filamentaire. 

Deuxièmement, une méthode reproductible est proposée pour extraire la topologie et la 

connectivité du réseau routier à des fins de modélisation. La précision du réseau routier 

modélisé était supérieure à 95 % pour les segments de route en comparant les résultats aux 

jeux de donnée de validation (Google Maps et Streetview). De plus, la précision d'extraction 

était très élevée pour les mouvements d'intersection, sauf pour les intersections avec un 

échantillon de parcours GPS très limité. 

Troisièmement, une méthode combinée SIG-apprentissage machine est proposée pour 

extraire le nombre de voies de circulation, essentiel pour déterminer la capacité routière. 

L'information sur le nombre de voies a été prédite avec une précision de 92 % grâce à une 

approche d'apprentissage d'ensemble basée sur la distribution latérale des points GPS dans 

chaque segment de route en plus de la variable de taille d'échantillon. 

Quatrièmement, le type de contrôle d'intersection des routes est extrait. La méthode 

proposée utilise la technique des classificateurs des voisins les plus proches en utilisant des 

variables de vitesse et de fréquence d’observation pour prédire le type de contrôle de 

l'intersection à une précision de 96 %. 

Enfin, une méthode est proposée pour améliorer le choix de l'itinéraire d'affectation du 

trafic en standardisant l'extraction des retards de mouvement aux intersections. Des 

facteurs d'ajustement sont proposés en fonction du mouvement de virage et du type de 
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route à intégrer directement dans les fonctions volume-délai utilisées dans les modèles de 

transport. 

En conclusion, les données de parcours GPS détectées par la foule sont une excellente 

source pour normaliser l'extraction des éléments du réseau routier et améliorer le 

développement de modèles de transport. Cependant, la principale limite des données GPS 

utilisées dans cette recherche était la taille limitée de l'échantillon qui réduisait la qualité 

de l'extraction des données localement lorsque la taille de l'échantillon de données était 

petite ou nulle.
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1.1 Context 

In 2018, 55% of the world’s population was living in urban areas. It was 30% in 1950 and is 

forecasted to reach 68% by 2050. In addition to the phenomenon of urbanization, global 

population growth, population aging, and international migration are the mega trends 

dictating the demography of today and tomorrow (UN, 2019). To adapt to demographic 

changes and support the economy, urban area transport agencies are continuously 

maintaining and developing their infrastructure. These investments represent important 

costs to communities, for example, the planned transport investments for the province of 

Quebec, Canada for 2022-2032 are estimated at 47,7 Billion dollars (Plan québécois des 

infrastructures 2022-2032, 2022). In addition, they are usually justified by economic 

development and growth. However, to ensure this positive outcome, effective use of 

transport infrastructure in addition to the infrastructure quality and type are essential 

determinants that need to be accounted for (Deng, 2013). For this reason, large-scale 

transport models, known as macroscopic transport models, are essential tools to help in the 

decision-making process.  

A transport model is a digital representation of the transport system used at the planning 

stage of transport projects to simulate the impact of policies, sociodemographic changes, 

and infrastructure projects on the transport system (Wegener et al., 1991). The outputs of 

these models are used in project evaluation procedures such as cost-benefit analysis and 

multicriteria analysis (Sinha & Labi, 2011) or meta-analysis (Hrabec et al., 2022; Liu et al., 

2023) . 
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Transport models can be divided into three main categories: macroscopic, mesoscopic, and 

microscopic models (Figure 1-1). Macroscopic models are used for regional planning and 

cover the road network of an entire metropolitan area. They require less detailed 

information about the road network. Mesoscopic models are used for sub-regional 

planning, for example, only the island of Montreal area.  

 

Figure 1-1. Transport Model Categories (Source: California Department of Transportation) 
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This type of model includes more detailed information about the road network, for example 

signal timing plans at each intersection and can be used to optimize operations at a 

subregional level.  Finally, microscopic models can cover from one intersection to a small 

network or corridor of intersections, they are used in traffic operation optimization and in 

traffic design. This type of model requires much more detailed information about the road 

network, for example, it needs a detailed road geometry compared to the two other model 

categories. This dissertation focuses on macroscopic models.  

Macroscopic transport models, are composed of three main components: transport 

demand, transport supply, and performance functions (Ortúzar & Willumsen, 2011). 

Transport demand represents the users of the transport system in terms of spatial and 

temporal distribution of the trips that need to be made. This information is generally 

obtained through traditional origin destination surveys (ARTM Faits saillants EOD 2018, 

2018) or derived from data collected using cellular towers (Alexander et al., 2015; Iqbal et 

al., 2014; Ma et al., 2013), GPS devices (Demissie & Kattan, 2022), transit smartcard readers 

(Munizaga & Palma, 2012), or Bluetooth and Wi-Fi devices (Carpenter et al., 2012; Lesani & 

Miranda-Moreno, 2019). In addition, researchers have proposed to infer origin destination 

travel demand based on outdated origin destination surveys and recent traffic counts 

(Freytes, 2022). 

Transport supply is the digital representation of the transport network and service. It is 

represented in terms of directional links and nodes. These elements also contain additional 

attributes used to describe road segments and intersection’ properties. For example, each 

segment has a specific number of lanes, a road type, and a link performance function. 
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Intersection properties are also required to indicate permitted movements, turn penalty 

functions, and control type. The digital road network representation is usually obtained 

through manual extraction or inference using other data sources such as satellite imagery, 

lidar, vehicle imagery, and GPS data (Banqiao et al., 2020). For public transit, transit routes, 

schedules, and vehicle capacities are also modeled as part of the transport supply. Recently, 

studies have used General Transit Feed Service to extract the public transit supply (Fortin 

et al., 2016).  

The last component of macroscopic transport models is the demand-supply interaction, 

known as link performance functions. They are specified for each directional link and 

represent the relationship between traffic flow and travel time (Kucharski & Drabicki, 2017). 

Calibration of these function relies on observed traffic counts and travel time data is 

generally done by collecting travel time data using GPS equipped floating vehicles driving 

along the main corridors of the modelled region (TRANS, 2014). This signifies that turning 

movement speeds are not observed and used to calibrate modelled intersection 

movements. 

Given the large scale of macroscopic models, their development requires important 

resources which limit their update frequency and their ability to represent the observed 

conditions. Therefore, it is important to seek new data sources and techniques that can 

reduce the required resources required to develop the model and increase its accuracy and 

update frequency.  
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Recently, GPS trajectory data has been collected using GPS-enabled smartphone devices. It 

should be noted that given the location of the research in North America, this dissertation 

refers colloquially to the Global Navigation Satellite System (GNSS) as GPS which is 

understood to be just the American part of the GNSS. This data contains the location 

longitude, latitude, and timestamp information recorded by each device at a specific rate. 

This information is used in numerous location-based services such as navigation 

applications, for example Google Maps. Activity tracking apps such as Strava also track and 

record GPS trajectories for active transport and makes the data available to help in active 

transport infrastructure planning (Lee & Sener, 2021; Sun & Mobasheri, 2017). In another 

study, crowd-sensed GPS trajectory data collected using a usage based insurance program 

was used for traffic safety studies (Stipancic et al., 2021). 

One of the main challenges in using crowd-sensed GPS trajectory data is the need to infer 

transport mode since it is not explicitly provided. However, extensive research has already 

been carried out and multiple studies have developed algorithms to infer transport mode 

based on trajectory characteristics (Dabiri & Heaslip, 2018; J. Li et al., 2021).  

Transport data providers have also developed techniques to integrate GPS data from 

multiple sources to be used in transport planning activities as it is the case with StreetLight 

Data (Turner et al., 2020; Yang et al., 2020). 

Research effort in the computer science and geography fields have researched the use of 

GPS trajectory data to infer road network map and topology. The works by Ahmed et al. 

(2015a, 2015b) provide a good overview of the different categories of map inference 
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algorithms. Although these research efforts are performed from a different perspective, 

they have a similar objective to transport network modelling, which is to develop a road 

network representation. However, in transport network modelling the modelled network 

requires the extraction of more detailed information which has not been sufficiently 

explored in past research using GPS data. 

1.2 Research Objectives  

The general goal of this research is to propose crowd-sensed GPS data-driven methods to 

help build on current large scale model development practice by increasing network 

modelling accuracy while facilitating its’ updateability and reducing the required resources. 

More specifically, the objectives of this research are: 

a. To provide a comprehensive literature review on the use of GPS trajectory data to 

extract road network features and maps.  

b. To propose a method to extract road network topology and connectivity features 

including road segments’ number of lanes information and road intersection control 

type based on GPS trajectory data. 

c. To propose a simple method to calibrate turn delay functions per road type, per 

control type, and turn type based on GPS data.  

The relationship between the different objectives of the research, the main input data, and 

the main modelling tool is presented in Figure 1-2. 
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Figure 1-2. Overview of Research Structure and Contributions 

1.3 Data Sources and Computing Tools 

This research is based on the use of multiple data sources that are described in this section.  

a. GPS data was collected during the spring of 2014 in Quebec City, Canada. It was 

collected during 21 days by 2000 voluntary users through the Mon Trajet 

smartphone app, made available by the Municipality. Each point is described by the 

following attributes: raw and map matched X and Y coordinates (reported with six 

decimal places), trip ID, speed, and timestamp (Year-Month-Day-Hour-Minute-

Second). Figure 1-3 presents a map of the study area showing raw GPS points 

(226,000 points) inside the study zone, which consists of 81 intersections.  
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Figure 1-3. Study Area - GPS points 

b. A shapefile file of the up to date study area road network, as seen in Figure 1-4, was 

available online ("Adresses Québec - AQréseau," 2022). The location of all 

intersections was obtained from the municipality ("Données ouvertes ", 2022). 

Finally, Google maps and street view were used to manually extract ground truth 

information.  
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Figure 1-4. Simple Road Network Geographic File 

c. Traffic counts were collected between the years 2013 and 2019 and provided by the 

Municipality of Quebec City. Traffic counts were available for a one-day period per 

intersection for 15-min time intervals from 7:00 to 10:00 and from 15:00 to 18:00. 

These periods were selected by the municipality to be able to cover peak traffic 

periods. 

Completing this study was possible using the following software: 

- Quantum Geographic information systems (QGIS)1: was used to visualize 

geographic data, perform visual validations, and create maps. 

 
1 https://qgis.org/en/site/ 
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- ArcGIS by ESRI2:  was used to construct travel paths from trajectory points 

using the network analyst extension. 

- Feature Manipulation Engine (FME)3: was used to manipulate data and perform 

geographic operations.  

- Equilibre Multimodal Multimodal Equilibrium (EMME)4: macrosimulation 

software used to build the road network model.  

1.4 Thesis Structure 

This dissertation is organized according to McGill University’s guidelines for manuscript-

based thesis. It is composed of one literature review manuscript and four manuscripts that 

address the objectives of this research. Each manuscript includes a more specific literature 

review that emphasizes the context of the study with respect to past research. The five 

manuscripts are followed by a comprehensive scholarly discussion of all the findings 

including the limitations and future research directions. 

Chapter 2 is a general and comprehensive literature review regarding research on the 

extraction of road network information using GPS trajectory data. This helped in identifying 

research gaps and guided this research work.  

Chapter 3 proposes a method to extract network-wide road direction and turning 

movement rules. In addition, it serves as a proof of concept by building a road network 

model under a widely used macroscopic transport modelling software, EMME. Sensitivity 

 
2 https://www.arcgis.com/index.html 
3 https://www.safe.com/ 
4 https://www.inrosoftware.com/en/products/emme/ 
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analysis was carried out to determine the output quality and to recommend future 

improvements.  

Chapter 4 presents a method to extract the number of lanes from GPS trajectory data by 

defining the problem as a supervised machine learning decision trees classification. The 

proposed method is divided into two main steps, a spatial analysis step and a machine 

learning modelling step. It presents the model accuracy in addition to the best predictors 

for intersection control type. 

Chapter 5 presents a method to develop a model inferring road intersection control type 

(traffic light, stops on all approaches, or stops on the secondary approach). Data was used 

to train and validate supervised machine learning classification models. It presents the 

model accuracy in addition to the best predictors for intersection control type. 

Chapter 6 presents a method to improve intersection movement delay modelling using 

crowd-sensed Global Positioning System (GPS) data. This is done through spatial analysis by 

providing a general definition of turning movements and extracting travel times from GPS 

trajectory points. A method was also provided to integrate the observed delays per 

movement type (right turn, through movement, and left turn) into volume delay functions 

commonly used in large scale transport models. 

Chapters 7 presents a scholarly discussion of this research by presenting findings, 

limitations, and future work directions. 

Chapter 8 presents the conclusion of this research and a summary of how the objectives 

were met and discusses the implication of findings.
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2.1 Abstract 

With the spread of smartphones and mobile internet, Global Positioning System (GPS) data 

from vehicles has become widely available. This data represents a unique opportunity to 

automatically extract road network features and generate detailed maps that can be used 

in the creation of transport network models, while minimizing the quantity of resources 

usually invested in that task. Accurate transport network models can be used in a variety of 

applications either in transport simulation models or autonomous vehicles navigation. 

Although two relevant literature reviews were performed during the last decade, they were 

not systematic and did not explore the road network inference methods from a transport 

network modelling point of view. The objective of this research is to perform a systematic 

and reproducible literature review on the use GPS data in transport network modelling and 

provide limitations and future work to extract a road network representation for transport 

models and autonomous vehicles navigation. This was done by systematically examining 

the studies’ different approaches with respect to relevant criteria. Most studies produced 

a simple representation of the road network, not detailed enough for transport models. 

Other limitations were the bias introduced by the GPS sample and the reproducibility of the 

different methods.  

Keywords: map inference; GPS data; transport model; road network; intersection 

movements. 
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2.2 Introduction 

Data and knowledge of detailed transport network features are important for multiple fields 

such as traditional and autonomous vehicle navigation, traffic safety, urban planning, and 

transport modelling. Although a basic road centreline network representation is sufficient 

for certain applications, other applications can require additional and more detailed 

information, which is the case for transport models. In fact, transport models are tools 

developed by transport engineers and planners to help in the decision-making process of 

transport infrastructure planning. This type of model can be divided into three main 

components: supply, demand, and performance where the supply component is mainly 

represented by a detailed digital road network. It represents road segments as directional 

links and intersections as nodes. It also contains additional attributes used to describe road 

segments and intersection’ properties. For example, each link has a specific number of 

lanes, a road type, and a link performance function. Intersection properties are also 

required to indicate permitted movements, turn penalty functions, and traffic control type. 

Additionally, the road network is dynamic in nature, since traffic rules can prohibit a subset 

of road users from using a specific road lane or making a specific movement at an 

intersection, depending on a temporal criterion. Therefore, the modelled road network 

should also represent this characteristic. The digital road network representation is usually 

obtained through manual extraction or inference using other data sources such as satellite 

imagery, lidar, and vehicle imagery (Banqiao et al., 2020).  The high cost and labour 

associated to these methods is the main limiting factor to data quality and update 

frequency.  
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To improve the transport network modelling process, transport modelling software 

providers have provided tools to automatically construct transport networks based on 

digital maps. While improving some aspects of the network modelling process, achieving a 

satisfactory network model quality still relies on manual intervention and additional data 

sources to validate and input some of the essential attributes. For example, traffic control 

information at intersections, permitted intersection movements, and number of lanes are 

usually unavailable in digital maps. In addition, digital maps require continuous 

maintenance and update, which also requires important resources.  

Thanks to location-based services, global positioning systems (GPS) data has become widely 

available in terms of spatial coverage and sample size, providing an immense potential for 

transport network modelling. This potential lies in the possibility to automatically extract 

road network features from GPS trajectory information. GPS trajectory data is defined as a 

set of chronological location points data where each point is described using longitude and 

latitude coordinates, a timestamp, and a trip ID. Depending on the parameters of the GPS 

device recording the points, the sampling rate or frequency can be set in terms of time or 

distance. For example, the sampling rate can be set to record the location point every 1 sec 

which is equivalent to a frequency of 1 Hz, or to record a location point every 10 meters. 

This systematic literature review explores research that used large-sample GPS data to 

automate the network construction process, by extracting road shape, topology, number of 

lanes, and permitted intersection movements. A special focus is placed on transport 

network features extraction usable for large scale transport model development.  
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In the geography and computer science fields, extracting a road map from GPS data, also 

known as map inference, has been explored since the 1990s. Within the last decade, two 

literature reviews were published on map inference techniques using GPS data by Ahmed 

et al. (2015a) and Chao et al. (2022). Map inference can be defined as the process of 

constructing the digital road map (roads location, intersections, topology, connectivity, etc.) 

based on specific data sources such as aerial images or GPS trajectories. The produced map 

can be as simple as a line representing the roads’ centerline. In contrast, transport network 

modelling requires the construction of digital road network model that describes the road 

network in detail to enable its use in transport modelling and simulation. An inferred map 

where the road network is created in a standardize directional link (road segment) and node 

(intersection) format containing the required attributes, such as the number of lanes, 

turning permissions, road type, intersection control type, can be defined as a road network 

model. can be defined as a road network model. 

The work by Ahmed et al. (2015a) benchmarks map inference algorithms by performing a 

comparison and evaluation using multiple GPS datasets and various quality measures. 

These algorithms have a common objective; to use GPS data points or trajectories as an 

input to create directional links and nodes representing the road network. The output is 

usually compared to a ground truth map. The algorithms were classified under three distinct 

categories based on the technique used: 1. Point Clustering, 2. Incremental track insertion, 

and 3. Intersection linking. In addition, algorithm performances were evaluated using four 

quality measures: 1. Directed Hausdorff distance, 2. Path based distance, 3. Shortest path-

based distance and graph-based sampling distance. This work is complemented by the book 
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authored by Ahmed et al. (2015b). Although the review is insightful and comprehensive in 

terms of map inference techniques, it is not systematic and does not approach the question 

from the transport modelling point of view, which requires specific road network features 

to be included in the network model. In fact, the review does not assess if the examined 

papers are extracting network features usable for transport network modelling, such as 

turning movement permissions, intersection controls, or the number of lanes available for 

traffic. In addition, it does not discuss the reproducibility of the different works reviewed. 

Furthermore, the review does not present the necessary future work to improve on the 

techniques and extract more detailed information from GPS data. Finally, Given the time 

elapsed since 2015 and the increasing availability of GPS data in recent years, an updated 

review of the work is beneficial to explore new work. 

More Recently, the literature review by Chao et al. (2022) explored more recent studies in 

the map inference context. Their focus was placed on the proposition of a new 

categorization of algorithms while assessing the existing map inference quality measures 

and the effect of GPS errors on the inference results. They proposed to classify map 

inference algorithms as: 1. Road abstraction, 2. Intersection linking and 3. incremental 

branching. Despite a minor change in the category names, these categories are not 

significantly different from the ones proposed by Ahmed et al. (2015a) and do not change 

the classification of the different algorithms. In addition, the work identifies the best 

algorithms in terms of scalability, accuracy, and suitability to update. This review is not 

reproducible and does not discuss map inference from the transport modelling point of 

view. Thus, it cannot assist in determining which technique is preferred to extract network 
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features for transport modelling. In fact, the review focuses on the performance of the 

available algorithms and does not present future works required to be able to extract more 

detailed network features from GPS data.  

Although past literature reviews are a good place to explore the work done in map 

inference, it was usually performed from the optic of the geography and computer science 

fields. Overall, there was no discussion about the ability of current algorithms to extract 

more detailed network features or the necessary research towards this objective. The 

literature review method performed in both works was not systematic, thus not 

reproducible. Finally, past literature reviews provide limited guidance for transport 

modelers in selecting the best techniques to model road networks or in determining future 

work since this was not the objective of their research. Therefore, the objective and 

contribution of this work is to build on previous research by developing a systematic and 

reproducible literature review that surveys the work done in the map inference field and 

the additional work required to be able to extract detailed road network features to support 

in transport network modelling. 

2.3 Methods 

To systematically review all relevant research while ensuring a high level of reproducibility 

of this research effort, this work was inspired by the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA, 2015). This technique requires the 

presentation of the study identification process, clearly indicating the sources and the 

screening steps and justifications. The research scope design, including objective, input and 

output data, and inclusion and exclusion criteria are presented below. 
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2.3.1 Search criteria 

The objective of the studies had to be the development of inference techniques of road 

network features based on regular / commodity GPS data. This excludes the use of high 

precision GPS or differential GPS, which is not feasible for large scale applications. Studies 

in the fields of geography, computer science, and transport planning and engineering 

using GPS points or trajectories as the main input regardless of the data collection device 

(in-vehicle, smartphone, etc.) were included. All studies aiming to construct (infer) a road 

network were included. The final output had to be a map of the road network. Only 

English and French publications were selected given the authors’ language abilities. If an 

author produced multiple publications, only the most recent was selected. In addition, 

only publications from the last 10 years were included (2012-2022). Publications without 

full texts were discarded.  

2.3.2 Search strategy 

The search strategy was developed by the authors in consultation with the librarian 

associated to the Civil Engineering department. Multiple trial searches were conducted to 

determine all synonyms. These trials were critical to the keyword selection as this research 

effort included different fields of research that do not use the same terminology. For 

example, the main research objective could be network modelling, map inference, map 

generation, map construction, or map extraction depending on the research field 

(computer science, geography, or transportation engineering and planning). The chosen 

keywords were then selected and searched in the following bibliographic databases: 

Scopus, Web of Science, Compendex, and Transport Research International Documentation 
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(TRID). The searches were performed on February 24th, 2022. The exact keyword 

specification is presented below:  

("GPS") AND ("network inference" OR "inference of network" OR "network 

extraction" OR “extraction of network” OR "network mining" OR “mining of 

network” OR "network generation" OR “Generation of network” OR "Road 

extraction" OR “Extraction of Road” OR "Road inference" OR “Inference of 

road” OR "Road Mining" OR “mining of road” OR "map extraction" OR 

“extraction of map” OR "map inference" OR “Inference of map” OR "Map 

mining" OR “mining of map” OR "lane reconstruction" OR “reconstruction of 

lane” OR "intersection reconstruction" OR “Reconstruction of intersection” 

OR "lane mining" OR “mining of lane” OR "intersection mining" OR “Mining 

of intersection” OR "lane inference" OR “inference of lane” or "intersection 

inference" OR “Inference of intersection” OR "intersection detection" OR 

“detection of intersection”) 

2.3.3 Selection of studies 

Following the removal of duplicates, the titles and abstracts were screened systematically 

by the author using the Rayyan web platform (Ouzzani et al., 2016). The full texts of the 

remaining publications were retrieved for an in-depth selection assessment. Finally, all 

studies respecting the inclusion criteria stated above were selected for data extraction and 

further analysis.  
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2.3.4 Data Extraction 

A global extraction form was developed and used to systematically extract all relevant 

information from the publications. The form was then used to analyze all studies on the 

same standardized basis. This form was completed by the author and contained, when 

available, the following information: author, year, title, journal / conference, study setting 

(country, city), field of study, research question, sample description, comparative methods, 

techniques used, detailed output, coverage, validation, comprehensibility, reproducibility, 

and limitations. 

2.4 Results 

Following the keywords’ selection, the database search identified 500 publications. 

Duplicate articles and publications before 2012 were removed. The title and abstract of the 

remaining 158 articles were screened, resulting in the exclusion of 110 articles. The final 

screening step was the full report retrieval and examination of the 48 publications. 

Following the screening process, 17 articles were included in this literature review. Reports 

were excluded when the research paper was a literature review, a book, not building a road 

network, requiring additional resources such aerial images, newer work was published by 

the same author, or the GPS sampling frequency was greater than one minute. Figure 2-1 

presents a breakdown of the search and screening process. 

A summary of the selected papers is presented in Table 2-1. It can be noted in the 

Journal/Conference column that most of the work done is in the field of geography and 

computer science. As for the experimental data that was tested, it was mainly collected in 

the United States and China. The main research question for all the studies was the 
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construction of a road network using GPS points or trajectories as input, by developing 

different algorithms and methodologies that can outperform previous research efforts. 

Out of the 17 studies, the most popular approach is clustering (n = 11). The intersection 

linking approach is the most recent to be explored by researchers (n = 4). Finally, the least 

popular approach is track alignment (n = 2). 

This work presents the different publications by approach as in Ahmed et al. (2015a). The 

selected studies are summarized in the following section under each of these approaches. 

The summarized information relates to the following elements: a) road network definition 

(network components, directionality, number of lanes, and turning movement 

permissions), b) output quality (if and how the output quality was evaluated), c) 

experimental data characteristics (sample size, sampling rate, collection method, and 

coverage), d) method clarity and reproducibility (if the article is sufficient to understand the 

method and be able to reproduce it.).  

The discussion goes further by analyzing the results from a transport network model point 

of view and presenting the opportunities for further research to extract road network 

features. 
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Figure 2-1. PRISMA diagram - Study identification process 
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Paper Journal / Conference Data Location Research question(s) Approach 

Guo (2021) Geo-spatial Information Science Wuhan, China Develop a novel method of extracting road maps from floating car data. Clustering 
Chen (2021) ISPRS International Journal of Geo-

Information 
Shenzhen, China Automatically generate road maps. Clustering 

Zhang (2020) ISPRS International Journal of Geo-
Information 

Shenzhen, China Incrementally extract urban road networks from spatio-temporal trajectory 
data. 

Clustering 

Arman (2020) Procedia Computer Science Antwerp, Belgium Identify lanes on highway segments based on Mobile Phone GPS. Map inference: Intersection 
Linking 
Lane detection: Gaussian 
Mixture Model 

Zhang (2019) ISPRS International Journal of Geo-
Information 

Chicago, USA and 
Wuhan, China 

Intersection-first approach for road network generation based on low-
frequency taxi trajectories. 

Intersection Linking 

Leichter (2019) Applied Sciences-Basel Joensuu, Chicago, 
Berlin, Athens 

Fast and straightforward method for the extraction of road segment shapes 
from trajectories of vehicles. 

Track alignment 

Hashemi (2019) IEEE Transactions on Intelligent 
Transportation Systems 

Cary, USA, and 
Beijing China 

Automatic inference of road and pedestrian networks from spatial-temporal 
trajectories. 

Clustering 

Daigang (2019) ISPRS International Journal of Geo-
Information 

Chicago, USA and 
Dongguan, China 

Two-stage approach for inferring road networks from trajectory points and 
capturing road geometry with better accuracy. 

Clustering 

Zhongyi (2018) ISPRS International Journal of Geo-
Information 

Nanning, China A road network generation method based on the incremental learning of 
vehicle trajectories. 

Track alignment 

Stanojevic (2018) SIAM International Conference on 
Data Mining 

Doha, Qatar and 
Chicago, USA 

Inferring the road network of a city from crowd-sourced GPS traces. Clustering 

Ezzat (2018) Journal of Computational Science Cairo, Egypt A clustering-based technique to extract the road map from GPS tracks. Clustering 
Dorum (2017) ACM SIGSPATIAL International 

Conference on Advances in 
Geographic Information Systems 

San Francisco and 
Knoxville, USA 

A comprehensive end-to-end unsupervised method based on principal 
curves for creating bi-directional road geometry from sparse probe data 
yielding a complete double-digitized road network from raw probe sources 
without prior map information. 

Clustering 

Li (2016) ACM International on Conference on 
Information and Knowledge 
Management 

Chicago, USA and 
Porto, Portugal 

A Spatial-Linear Clustering (SLC) technique to infer road segments from GPS 
traces. 

Clustering 

Jia (2016) ISPRS International Journal of Geo-
Information 

Chicago, USA and 
Wuhan, China 

A new segmentation and grouping framework for road map inference from 
GPS traces. 

Clustering 

Xingzhe (2016) ISPRS International Journal of Geo-
Information 

Chicago, USA A method to infer the topology of the road network through intersection 
identification, and to extract the geometric representation of each road 
segment by track alignment. 

Intersection Linking 

Elleuch (2015) INNS Conference on Big Data Tunisia Infer the geometry of road maps in Tunisia and the connectivity between 
them. 

Clustering 

Karagiorgou (2012) International Conference on 
Advances in Geographic Information 
Systems 

Athens, Greece, Automatic road network generation algorithm that takes vehicle tracking 
data in the form of trajectories as input and produces a road network graph. 

Intersection Linking 

Table 2-1. Summary of findings
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2.4.1 Clustering approach 

This method uses GPS points or segments to fit the road centreline according to the data density 

distribution. Two main methods are used to cluster GPS data. The first covers the entire region 

with a grid and computes the GPS data density for each grid cell. Based on that information, it is 

possible to infer road segment or intersection locations. An example of density-based clustering 

is the Kernel Density Estimation (KDE) method used by B. Q. Chen et al. (2021). 

The second method clusters the GPS data by averaging it based on proximity and direction criteria 

to determine road segments and intersections. Examples of this method are the k-means 

algorithm used by Stanojevic et al. (2018) and the Density-Based Spatial Clustering of Applications 

with Noise (DBSCAN) used by Ezzat et al. (2018). Eleven publications are classified under this 

approach of map inference. A summary of the experimental data description and validation 

results of these papers is presented in Table 2-2. The data collection method provides 

information regarding how the GPS trajectory data was collected, for example, it could be 

collected using GPS-enabled smartphones, commercially available GPS devices, or in-vehicle GPS 

trackers. Moreover, the GPS trajectory data sample size, which is the number of collected GPS 

points, is also presented in the table to give an idea about the scale of the sample. Finally, it is 

important to mention that sampling rate, or the frequency at which GPS points are collected 

during a trip, has a direct influence on the resolution of the GPS trajectory data and it is also 

reported in Table 2-2. The samples and collection methods are not the same for all the studies, 

therefore, the results cannot be compared directly. However, some studies have tested their 

algorithm on a dataset previously used in another study to enable comparability. Additionally, 

the work by Ahmed et al. (2015a) has tested different map inference algorithms using common 
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GPS trajectory datasets and compared the output using multiple indicators to provide a 

comparison between algorithms. 

In network modelling, a detailed network model is essential to ensure the correct connectivity, 

topology, and capacity of roads and intersections. Therefore, road direction, turning movement 

permissions at intersections, and number of lanes are essential features to know. Research effort 

by Elleuch et al. (2015) has simply created an undirected road network without formally creating 

road segment and intersection representations. The produced shape of the road network is 

insufficient for use in road network modelling since it is missing most of the basic essential details, 

such as connectivity and topology. Meanwhile, several research efforts go further by generating 

directional road segments and intersection location (B. Q. Chen et al., 2021; Ezzat et al., 2018; Y. 

Guo et al., 2021; Y. F. Zhang et al., 2020). However, none of the studies implementing a clustering 

approach extract an explicit representation of intersection movements nor have they developed 

a lane-level road network, essential in determining the network’s vehicular capacity.  

Paper Sample Description 
(Location, Collection Method, Sample Size, 
Sampling Rate) 

Validation Results 

Guo (2021) Wuhan, China, 
GPS device by researchers, 
1.4 million points, 
20 to 60 seconds 

Intersection Detection:     Precision: 0.914 - 0.929 
                                       Recall: 0.787 - 0.975 
                                      F-score: 0.846 - 0.951 
Road centerline extraction: Precision: 0.754 - 0.802  
                                          Recall: 0.805 - 0.812 

Chen (2021) Shenzhen, China, 
Taxi GPS, 
75 million points, 
26 seconds 

Road centerline extraction:   Precision: 0.966 
                                          Recall: 0.943 
                                          F-score: 0.850 

Zhang (2020) Shenzhen, China, 
Taxi GPS, 
1.2 million points, 
60 to 100 seconds 

96% of extracted road length fell within 15m buffer w.r.t. ground 
truth 

Hashemi (2019) Cary, USA, and Beijing China, 
N/A, 
Multiple datasets, 
9 to 40 seconds, 

Completeness, Precision, and Topology Correctness 
Variable results reported for 33 datasets 

Daigang (2019) Chicago, USA and Dongguan, China, 
University Campus Shuttles and taxis, respectively, 
118364 and 280253 points, respectively, 
3.61 and 50.13 respectively 

Length of extracted road:  83.6% - 87.4% 
Precision: 0.78 
Recall: 0.6 
F-score: 0.68 
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Paper Sample Description 
(Location, Collection Method, Sample Size, 
Sampling Rate) 

Validation Results 

Stanojevic (2018) Doha, Qatar and Chicago, USA, 
Fleet of vehicles with GPS-enabled devices. 
5.5 million and 200 000 points, respectively, 
N/A 

Geometry: F-score: 0.53 - 0.60  
Topology: F-score: 0.80 to 0.85 

Ezzat (2018) Cairo, Egypt, 
Two user contributed datasets, 
302 000 and 12.7 million points, 
11 to 15 seconds and 1 to 3 seconds 

Precision: 0.92 
Recall: 0.68 
F-score: 0.79 

Dorum (2017) San Francisco and Knoxville, USA, 
Commercial fleets and consumer devices, 
43 million and 850 million points, respectively, 
N/A 

Link Count % (reported per road type) 65% - 98.6%  
Link Length % (reported per road type) 71.9% - 99.4% 

Li (2016) Chicago, USA and Porto, Portugal, 
University Shuttles and Taxis, respectively, 
118 000 and 296 573 points respectively, 
3.6 seconds and more than 15 seconds, 
respectively 

Precision: 0.68 - 0.98 
Recall: 0.45 - 0.65 
F-Score: 0.56 - 0.78 

Jia (2016) Chicago, USA and Wuhan, China, 
University Shuttles and Taxis, respectively, 
118 000 and 350 000 points respectively, 
3.6 seconds and more than 37.4 seconds, 
respectively 

Precision: 0.902 - 0.975 
Recall: 0.679 - 0.734 
F-Score: 0.775 - 0.838 

Elleuch (2015) Tunisia, 
GPS receivers in 10 000 vehicles, 
> 100 Gb, 
N/A 

N/A 

Table 2-2. Clustering approach - sample description and validation results 

Although researchers are continuously improving map inference techniques to obtain higher 

quality results, input data characteristics remain a main determinant of output quality. The 

variety of data sources used in the 11 studies makes it difficult to compare them and determine 

the best map inference method. This is caused by the differences in GPS data collection devices 

(in-vehicle, GPS enabled smartphone, GPS tracker, etc.), differences in sampling rates, 

differences in the number of points or trajectories available, and differences in collection 

environments (various levels of GPS signal interference and availability). For Example, B. Q. Chen 

et al. (2021) uses a dataset of 75 million points collected by taxi GPS devices in Shenzhen, China 

with an average sampling rate of 26 seconds, while one of the two datasets used by Daigang et 

al. (2019) is composed of 118 000 points collected by university shuttles in Chicago, United States 

at an average sampling rate of 3.6 seconds. The same algorithm applied to both datasets can 

result in different output quality levels. GPS data used in most of the studies was obtained using 
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GPS-equipped taxis or shuttles, which introduces bias by not representing an average motorist’s 

behavior. In the case of shuttles, this bias can be in terms on spatial coverage since they have 

fixed routes and might also be permitted to drive on private roads such as campuses. Thus, the 

inferred map based on this data might not reflect the whole network available to all motorists. 

Additionally, shuttles usually have a fixed schedule and cannot provide a good temporal coverage 

for all periods of the day. On the other hand, GPS-equipped taxis can have adequate temporal 

coverage, however, some road networks have dedicated lanes and turning permissions for taxis 

to encourage their use. Therefore, this introduces some spatial bias if the extracted network is 

to be used by a private motorist.  

In the study by Elleuch et al. (2015), insufficient information was provided regarding the 

experimental data. In parallel, some researchers have used well known benchmark datasets to 

enable the comparability of their algorithm’s performance. For example, some researchers have 

evaluated the execution of their algorithms on the Chicago dataset (Daigang et al., 2019; Jia & 

Ruisheng, 2016; H. F. Li et al., 2016; Stanojevic et al., 2018). However, this dataset is obtained 

from university shuttles and has spatial and temporal limitations. 

The most common evaluation method, initially introduced by Biagioni and Eriksson (2012), was 

the harmonic mean of precision and recall, also known as F-score or F-value. It is calculated as 

follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 + 𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 + 𝑁𝑜𝑡 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑
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𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

where Correctly Extracted + Incorrectly Extracted = Extracted or inferred network elements and 

Correctly Extracted + Not Extracted = Ground Truth. A higher F-score (closer to one) indicates a 

better inference and match to the ground truth. Typically, the ground truth was selected to be 

an open-source map from Open Street Maps, a road map that relies on the public for update. 

Using it as the ground truth assumes that does not contain errors, which is not always true. 

Therefore, this introduces a bias in the output quality measurement. 

Distance and direction angle thresholds are used to determine if two elements (road segments 

or intersections) match. In addition, the sampling can be in terms of points or entire segments. 

For example, H. F. Li et al. (2016) samples every segment (or link) while Biagioni and Eriksson 

(2012) sample points throughout the inferred and ground truth networks. Eight papers out of 

eleven use this indicator to quantify the output network quality, while Dorum (2017) and Y. F. 

Zhang et al. (2020) only report recall values. Recall values are unable to quantify the number of 

network elements that were incorrectly extracted. The study by Elleuch et al. (2015) does not 

report any quantitative measures, which does not allow the author to assess the output quality.  

The output quality assessment was also reported for different threshold values with lower 

thresholds making the ground truth matching stricter. This explains the different values 

presented for precision, recall, and F-score for a given method. 

As presented in Table 2-2, the method proposed by B. Q. Chen et al. (2021) for centerline 

extraction achieved the highest F-score (0.850), followed closely by Jia and Ruisheng (2016) 



2-32 
 

(0.838). Meanwhile, the method proposed by Daigang et al. (2019) resulted with the lowest F-

score (0.68).  

Overall, F-score is found to be the best indicator method output quality since it takes into account 

the number of correctly extracted, incorrectly extracted, and not extracted network features. 

Most studies are easy to read and understand and graphics, tables, and GIS components are 

relatively well presented (Dorum, 2017; Ezzat et al., 2018; Y. Guo et al., 2021; Jia & Ruisheng, 

2016; Y. F. Zhang et al., 2020). However, only the works by Hashemi (2019) and Ezzat et al. (2018) 

are presented in a reproducible fashion. 

2.4.2 Intersection linking approach 

This approach divides the network inference process into two main steps: 1) detecting 

intersections using the GPS data, for example, based on turning angles, 2) using GPS trajectories 

to link the intersections together and form a network.  

This technique can be seen in (Karagiorgou & Pfoser, 2012; Xingzhe et al., 2016; C. Zhang et al., 

2019). A variation is presented by Arman and Tampere (2020) where intersections are 

determined by finding merge and diverge locations. In fact, this paper also uses the Gaussian 

Mixture Method to estimate the number of lanes based on the distribution of GPS points within 

a road segment.  

Four publications are classified under this approach of map inference. A summary of the 

experimental data description and validation results of these papers is presented in Table 2-3. 

Paper Sample Description 
(Location, Collection Method, Sample Size, 
Sampling Rate) 

Validation Results 
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Arman (2020) Antwerp, Belgium, 
Mobilis smartphone app, 
21 100 trajectories, 
1 second 

On average within 4% in term of speed and 
14% in term of lane share w.r.t ground truth 

Zhang (2019) Chicago, USA and Wuhan, China, 
University Shuttles and Taxis, respectively, 
118 364 and 800 000 points respectively, 
3.6 seconds and more than 40 seconds, respectively 

Intersection Detection: 
more than 90% 
Road centerline extraction:  Precision: 0.932-
0.980 
Recall: 0.704 - 0.886 
F-score: 0.820 - 0.908 

Xingzhe (2015) Chicago, USA, 
University Shuttles, 
118 000 points, 
3.6 seconds 

Intersection Accuracy:  
F-Score: 0.02 - 0.91 
Connectivity Accuracy: F-Score: 0.19-0.95 

Karagiorgou (2012) Athens, Greece, 
GPS devices, 
N/A, 
30 seconds 

Shortest paths comparison 

Table 2-3. Intersection linking approach - sample description and validation results 

The intersection linking approach has the advantage of explicitly defining intersections by 

default, since it is the first step of the method. The four papers produce a directional road 

network. While three of the methods infer road centerlines, the work by Arman and Tampere 

(2020) is the only one to propose a method that determines the number of lanes. Intersection 

movements are only determined using the methods proposed by Karagiorgou and Pfoser (2012) 

and Xingzhe et al. (2016).  

Different GPS data sources were used to propose intersection linking map inference methods. 

The Sampling rate varies between one second and thirty second in the works by Arman and 

Tampere (2020) and Karagiorgou and Pfoser (2012), respectively. Meanwhile, Xingzhe et al. 

(2016) and C. Zhang et al. (2019) use the same benchmark dataset, which enables their 

comparability. It is important to note that the work by Arman and Tampere (2020) limits the 

experiment to a small section of a highway corridor. This is insufficient to determine if the 

proposed method will perform well in more complex environments. 
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Network inference quality was evaluated using three different methods. Arman and Tampere 

(2020) compared the results with speed and count data while Karagiorgou and Pfoser (2012) used 

a shortest path based distance. In fact, this measure computes the shortest path distance for a 

set of OD pairs for both inferred and ground truth maps. The similarity between these distances 

indicates a similarity between the two maps in terms of geometry and connectivity. This method 

is not deterministic and can lead to false similarity conclusions. The final two papers by Xingzhe 

et al. (2016) and C. Zhang et al. (2019) use the harmonic mean of precision and recall, to assess 

the output quality. Both methods produce a very good F-score (>0.90), however, the method 

proposed by Xingzhe et al. (2016) has a high variability in the output quality. In terms of clarity, 

methods proposed by Karagiorgou and Pfoser (2012) and C. Zhang et al. (2019) are well 

explained. However, only the work by Karagiorgou and Pfoser (2012) contains sufficient details 

to be deemed reproducible. 

2.4.3 Track alignment approach 

Map inference using track alignment incrementally adds GPS tracks to an initially empty map. 

This approach can also be seen as an incremental averaging of the GPS tracks. Two publications 

are classified under this approach of map inference. A summary of the experimental data 

description and validation results of these papers is presented in Table 2-4. 

The proposed methods focus on extracting a directional road network, represented by the 

centerline of the road. Therefore, intersections are not formally defined, and the number of lanes 

information is not determined. 
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In Zhongyi et al. (2018), experimental GPS data is obtained from a logistics company trucks. The 

use of truck GPS data can introduce a bias in terms of road coverage, as trucks are usually limited 

to drive on a subset of the entire road network due to their size, nuisance, and material they 

transport. The work by Leichter and Werner (2019) does not specify the experimental data 

details. In fact, this paper was written as part of competition oriented towards map inference 

algorithms efficiency and speed.  

The inferred map quality was not evaluated by Zhongyi et al. (2018) since no ground truth was 

available. Meanwhile, Leichter and Werner (2019) evaluated the quality of inferred map using 

the HC-SIM, which measures the overlap of two lines (inferred and ground truth). An HC-SIM 

measure of 0.612 was obtained which ranked this method among the best in the competition. 

The explained methods lack some details to be fully understandable. The work by Leichter and 

Werner (2019) does not present the algorithm, while Zhongyi et al. (2018) does not present 

sufficient description, figures, and diagrams. Therefore, none of the two works is reproducible. 

Paper Sample Description 
(Location, Collection Method, Sample Size, 
Sampling Rate) 

Validation Results 

Leichter (2019) Joensuu, Chicago, Berlin, Athens, 
N/A, 
Multiple datasets, 
N/A 

HC-SIM of around 0.66 

Zhongyi (2018) Nanning, China, 
Logistics company trucks,  
451 537 points, 
10 seconds 

N/A (no ground truth) 

Table 2-4. Track alignment approach - sample description and validation results 

2.5 Discussion 

A detailed road network representation is essential for multiple tasks such as traditional 

navigation, autonomous vehicle navigation, and transport modelling. A transport model relies on 

the road network model as one of its main components. In more detail, the road network 
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representation needs to accurately depict the road’s geographic location, direction, type, 

number of lanes, connectivity, and intersection control type, and permitted turning movements. 

Additionally, the actual road network is dynamic in nature, since traffic rules can prohibit a subset 

of road users from using a specific road lane or segment or making a specific movement at an 

intersection, depending on the temporal criteria. Therefore, the modelled road network should 

also consider this characteristic.  

The reviewed studies demonstrate that research has been carried out on the topic of road 

network feature extraction. This review found that two main approaches are the most popular: 

clustering and intersection linking, as can be seen in Table 2-3 and Table 2-4. They can reconstruct 

a road network model from GPS data with high accuracy (Y. Guo et al., 2021). However, it is not 

possible to conclude if one approach is better than the other since within one approach, different 

methods achieve different accuracies. Moreover, different methods have used GPS data from 

different sources and different validation methods which makes them not directly comparable. 

The work done by Ahmed et al. (2015a) tested the main algorithms using different GPS trajectory 

datasets and compared the output quality using different indicators. They found that, in general, 

algorithms that produce maps with higher accuracy have a lower coverage and the opposite is 

also true. However, the algorithm by Karagiorgou and Pfoser (2012) produced maps that have 

good accuracy and coverage.  

The reviewed research used multiple measures to evaluate the accuracy of the constructed 

networks in comparison to ground truth maps. The most relevant and common measure was the 

F-score introduced by Biagioni and Eriksson (2012). It evaluates the similarity between the 

extracted network and the ground truth by relating the number of correctly extracted features, 
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with the number of incorrectly extracted features and the number of unextracted features. 

Although these findings are a good basis for road network features extraction from GPS, the 

following limitations were noted and need to be addressed in future research to be able to 

extract road network models usable in transport modelling and autonomous vehicle navigation: 

• The constructed network is only a representation of directed road centrelines, and 

intersection locations. This level of detail is insufficient for road network model 

requirements as described above. 

• Given the multitude of GPS data sources used in past research to extract network 

features, it is impossible to select the best method simply based on the F-score. In fact, 

GPS data used in the studies was obtained via shuttles, taxis, trucks, fleets, researcher 

initiative, or crowdsourcing. This results in variable spatiotemporal sampling 

characteristics rendering a direct comparison of the results impossible. Ideally, all 

methods should be evaluated using the same GPS sample and compared to the same 

ground truth.  

• Not all GPS data sources provide the same level of road network representativity. For 

example, using GPS data collected by a specific fleet such as trucks, transit vehicles, or 

shuttles introduces bias with respect to the type of roads or routes that are permitted for 

them. Multiple studies used university shuttles to extract road network features, the most 

recent being the effort by Daigang et al. (2019). This limits the coverage of the extracted 

network features to fixed routes or road types.  

• Several studies were found to be irreproducible since the method is not clearly detailed 

or due to data unavailability. 
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These limitations need to be addressed to extract road network features with sufficient detail for 

use in transport simulation models.  The following steps can help achieving this goal and 

contribute to the current research: 

• The use of large GPS datasets collected by light private vehicles to reduce the road 

network coverage bias.  

• The development of methods to extract road segment related features from GPS data 

such as road type, posted speed, and number of lanes.  

• The development of methods to extract intersection related features from GPS data such 

as turning movement permissions and control type.  

• The consideration of the dynamic nature of the road network which affects road segment 

or intersection related variables. 

• Making detailed and reproducible methodology available for future researchers to build 

on.  

2.6 Conclusion 

This paper extends past literature reviews by viewing the map inference problem from the 

transport network modelling point of view. The search strategy was shared to render the search 

reproducible. It has been found that two main approaches are popular to extract network 

features from GPS data. However, the extracted output is limited to the road centreline, including 

directionality, and intersection locations. It was also found that the main accuracy indicator used 

to assess the similarity between the extracted network and the ground truth is the F-score. 

Additionally, some of the reviewed methods achieve high, but improvable accuracy.  
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GPS data, depending on its sampling coverage and frequency is rich and can be further explored 

to extract more detailed road network features. For example, future research can explore the 

extraction of road segment type, posted speed and number of lanes in addition to intersection 

control type and turning movement permissions. Being able to extract all road network features 

required for large scale transport modelling from GPS data will be of immense value as it will 

improve model quality and update frequency while reducing the required resources. Such data 

will be valuable for accurate navigation systems of automated vehicles. 
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3.1 Abstract 

Emergence of road users’ global positioning system (GPS) trajectory data is increasing research 

interest in knowledge discovery to improve transport planning related methods and tools. In fact, 

the widespread use of GPS enabled smartphones and mobile internet has increased the 

availability and size of such data. With the increase in GPS data coverage and availability, some 

research has expanded its use to estimate state-wide vehicle-miles travelled, to classify driving 

maneuvers for road safety assessment, or to estimate environmental performance indicators, 

such as vehicular fuel consumption and pollution emissions. In computer science, research has 

used GPS data to infer road network maps. Although the inferred maps provide a correct 

topology and connectivity, they lack essential details to be used for transport modelling. 

Therefore, this work proposes a method to extract network-wide road direction and turning 

movement rules. In addition, it serves as a proof of concept by building a road network model 

under a widely used macroscopic transport modelling software, EMME. Sensitivity analysis was 

carried out to determine the output quality and recommend future improvements. Road 
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segment geometry and directionality were extracted accurately, however, turning movement 

rules can be extracted more accurately using a larger GPS trajectory sample. 

Keywords: GPS, Transport Model, Road Network, Intersection Control, Map Inference, Road 

Direction, Turning Movement, EMME. 

3.2 Introduction 

Transport network modelling requires large quantities of data, depending on the project size and 

level of detail. For example, building a micro-simulation network model for a neighborhood, 

requires detailed road geometry, road type, transport demand matrices, intersection control 

type and traffic light phasing, to name a few. The model results also require validation, usually 

done by comparing the model output to traffic counts and observed travel times and delays. This 

data is collected by different means and for different sample sizes depending mainly on modelling 

needs and available resources.  

Traditionally, in the transport field, global positioning system (GPS) data was obtained from 

floating vehicles and probe vehicles to estimate travel time, queue length, and traffic volume as 

in the works by Zito and Taylor (1994) and Zhao et al. (2019). This technique estimates trip 

characteristics for a specific fleet or for predefined corridors which can introduce bias when the 

sample is limited spatially (only a few corridors) or in terms of fleet (only buses, taxis, or 

commercial vehicles). In one study, Tantiyanugulchai and Bertini (2003) used GPS-equipped 

transit vehicles  to determine if transit vehicle speeds and travel times are a good proxy for 

general traffic conditions to be used in real-time advanced traffic management and traveler 

information systems. A second study by El-Geneidy and Bertini (2004) used probe transit vehicle 
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GPS data to determine the optimal time resolution and speed measure to report traffic 

conditions obtained from loop detector data. Although these methods are useful to answer 

specific questions, Mennis and Guo (2009) found that an increase in the sample size and the 

coverage of GPS data enables researchers to perform data mining and increase geographic 

knowledge discovery.  

Recently, the widespread use of GPS enabled smartphones and mobile internet made collecting 

and saving GPS data simple and relatively inexpensive. As this data is becoming more widely 

available, it is attracting a lot of research interest in the transport field. High-sample GPS 

databases are being built and knowledge discovery research from GPS data has already started. 

For example, Fan et al. (2019) examined the use of GPS data to estimate vehicle miles travelled 

within the state of Maryland in the United States. In another study, Phondeenana et al. (2013) 

used GPS data to classify driving maneuvers to improve road safety. In the environmental field, 

studies proposed methods to estimate congestion, vehicle fuel consumption, and pollution 

emissions using GPS data (Gately et al., 2017; Kan et al., 2018; Lin et al., 2019). 

In parallel, computer science and geography researchers have been exploring the use of GPS data 

to infer road network’s geometry, topology, and connectivity. Some studies have compared the 

different algorithms to infer road network from GPS data. These algorithms were divided into 

three categories: point clustering, intersection linking, and incremental track insertion. Through 

a clustering approach, few studies in China have developed techniques to automatically extract 

the road network from GPS points or segments (B. Q. Chen et al., 2021; Y. Guo et al., 2021; Y. F. 

Zhang et al., 2020). The main idea was to fit the road centerline according to the GPS data density 

distribution. Other researchers explored intersection linking techniques to generate road 
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segments from vehicle trajectory data (Karagiorgou & Pfoser, 2012; Xingzhe et al., 2016; C. Zhang 

et al., 2019). This approach divides the network inference process into two main steps: 1) 

detecting intersections using the GPS data, for example, based on turning angles, 2) using GPS 

trajectories to link the intersections together and form a directed road network. Finally, the track 

alignment approach was studied by some researchers(Leichter & Werner, 2019; Xingzhe et al., 

2015; Zhongyi et al., 2018). This technique incrementally adds GPS tracks to an initially empty 

map and can also be seen as an incremental averaging of the GPS tracks. These techniques can 

serve as the base for future research that aims to build a detailed road network for transport 

modelling or autonomous driving. In fact, road network building is a very active research area in 

autonomous driving. Providing detailed network features is essential for autonomous vehicles’ 

operation since they require precise knowledge of network topology and geometry. For example, 

Bender et al. (2014) aimed to develop the first map model usable by autonomous vehicles by 

representing road lanes and intersections not only in terms of directional lines but also in terms 

of drivable surfaces by introducing right and left bounds. The map model also needed to integrate 

driving rules.  

Although, the past developed work is useful for generating simple road networks, based on GPS 

data, with a correct topology and connectivity, there is a need to develop methodologies that 

help extract detailed network features for transport network modelling. For example, map 

inference methods are lacking the ability to extract detailed information of network-wide 

features such as turning movement permissions at intersections or road segment number of 

lanes, essential input data for transport network models. The development of macroscopic 
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network models is labor- and data-intensive. Therefore, the development of automated methods 

can help reduce significantly the resources required in the transport modeling tasks.    

The objective of this work is to develop a method to extract road network features from GPS Data 

to be used in transport network modelling. In addition, it aims to provide proof of concept by 

building a road network model under a widely used macroscopic transport modelling software, 

EMME. More precisely, GPS data is used to extract network-wide road direction and turning 

movement information. This information is essential in transport modeling and land use studies 

when the study area is large, and network features cannot be collected as efficiently using other 

methods. 

3.3 Methods 

Four main input datasets are used: 1) GPS trajectory points, 2) Geographic representation of the 

road network, 3) Geographic location of all intersections, and 4) Google maps and Street View. 

GPS data was collected during the spring of 2014 in Quebec City, Canada. It was collected during 

21 days by 2000 voluntary users through the Mon Trajet smartphone app, made available by the 

Municipality. Each point is described by the following attributes: map matched X and Y 

coordinates, trip ID, speed, and timestamp (Year-Month-Day-Hour-Minute-Second). Figure 3-1 is 

a map of the raw GPS points (226,000 points) inside the study zone, which consists of 81 

intersections.  
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Figure 3-1. Study area – GPS data points 

A shapefile file of the up to date study area road network was available online ("Adresses Québec 

- AQréseau," 2022). The location of all intersections was obtained from the municipality 

("Données ouvertes ", 2022). Finally, Google maps and street view were used to validate the 

results by serving as the ground truth for road segment direction and intersection movement 

permissions.  

Completing this study was possible using QGIS, ArcGIS, FME, and EMME. QGIS was used to 

visualize geographic data, perform visual validations, and create maps. While travel paths were 

constructed using the network analyst extension in ArcGIS. FME was used to manipulate data 

and perform geographic operations. Finally, EMME is the macrosimulation software used to build 

the road network model. 
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Extracting road network features from GPS data can be divided into three main parts: 1) 

initialization, 2) link direction extraction, and 3) turning movement permission extraction.  

3.3.1 Initialization 

The first part of the process is the initialization. It consists of creating an initial base network using 

the EMME software and the simple road network shapefile. This creates a digital network 

representation composed of links and nodes (see Figure 3-2). Each node is uniquely identified 

and located exactly at the intersections depicted in the simple road network shapefile. On the 

other hand, links are created assuming that all roads are two-way streets, and each link is 

represented using its origin and destination nodes. It should also be noted that the initial road 

network model created by EMME allows all movements at intersections except for U-turns. 

In parallel, the GPS points are filtered to remove outliers, defined as consecutive points separated 

by more than 30 meters. This threshold was determined following the visual inspection of GPS 

trajectory points. The outlier removal created small gaps within the GPS trajectories which were 

connected using a shortest path algorithm and the simple road network shapefile using the 

network analyst extension in ArcGIS. This produced full trip trajectories that were geographically 

snapped to the simple road network, which enabled the following geographic processing steps.  
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Figure 3-2. EMME initial road network model – links and nodes 

3.3.2 Link direction extraction 

The road network model created during the initialization step assumed 2-way links for all road 

segments. However, this is not always true as some roads are only one-way. The link direction 

extraction process aims to extract the directionality information from the observed GPS data to 

remove modelled links that do not exist.  

Following the initialization phase, trip trajectories are divided into straight segments for which 

segment azimuth is calculated. The azimuth corresponds to the angle between the segment 

orientation and the North measured clockwise. After examining the study area, a direction 

dictionary was created to associate different azimuth ranges to cardinal directions (Figure 3-3). 

Each segment was then associated to a cardinal direction depending on its azimuth. The same 



3-52 
 

procedure was applied to the initial EMME link table to determine link directions. Once the 

directions are determined for the GPS trajectory segments and EMME links, a geographic 

operation was carried out to determine the nearest link for each GPS trajectory segment. The 

segment direction was used as a criterion to only select the nearest link with the same direction. 

 

Figure 3-3. Correspondence between azimuth angle and direction 

For each link, the number of observed GPS segments associated to it was calculated and put in 

relation with the number of segments associated to the reverse link by computing their ratio. For 

example, a ratio value of 0.05 (or 5%), for a given link, signifies that the number of GPS segment 

observations for that link is equal to 5% of the observed number of segments on the reverse link. 

This indicates a high likelihood of that link (or direction of travel) to not exist, since it is expected 

to have a similar count magnitude in both directions for a given road.  

 To determine the optimal ratio value indicating the presence/absence of a link, a sensitivity 

analysis was carried out by testing different ratio value limits between 1% and 10% and  
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Figure 3-4. Link direction extraction process 
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comparing the results with the ground truth obtained from Google Maps. For a given ratio limit 

value limit, a link having a ratio value smaller than the ratio limit value is considered to not exist, 

while a ratio value greater or equal to the ratio limit value is considered to exist. Once the 

prediction is made for each link, the accuracy was calculated as the number of correct link 

direction predictions divided by the total number of links. The ratio limit value producing the 

highest accuracy was selected as the optimal ratio limit value. Once the optimal value was 

determined, the absolute number of observed segments for each road was analyzed to 

determine the impact of sample size on link direction prediction accuracy. A second sensitivity 

analysis was performed by introducing different segment count cutoff thresholds. In other words, 

prediction accuracy was computed on a subset of links that have at least a minimum number of 

observed segments in one of the two link directions. The tested cutoff threshold values were: 0 

(or all links),10, 20, 30, 40, 50, 100, and 200. At each of the cutoff thresholds, link directions were 

predicted and compared with the ground truth to calculate prediction accuracy. A summary of 

the steps, including initialization, is presented in Figure 3-4. 

3.3.3 Turning movement permission extraction 

Having created a correct link and node representation of the road network, the following step 

was to determine the permitted turning movements at intersections. In the initial road network 

model created using EMME, all intersection turning movements are allowed except for U-turns, 

however, the objective of this step is to extract and allow only the turning movements that were 

observed within the GPS trajectories. Figure 3-5 presents a summary of the process to extract 

turning permissions from observed GPS trajectories.  
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Since not all nodes are intersections, the intersection locations obtained from the Municipality 

were used to create 20-meter radius buffers, selected through inspection of the study area, and 

select the nodes within these buffers as intersection nodes. The selected nodes were then used 

to create new 3-meter radius buffers. These intersection node buffers were used to clip only the 

parts of GPS trajectories located within each buffer. Since the modelled road network is 

geographically based on the simple road network and the GPS trajectories were snapped on the 

same simple road network during the shortest path operation, a good superposition of both 

geographic features was ensured. The clipping operation removed GPS trajectory segments that 

were considered to not be intersection movements. The remaining trajectory segments within 

the node buffers were then divided into two segments, inbound (towards the node) and 

outbound (outwards from the node). The following step was to determine the azimuth for the 

inbound and outbound segments per node per trajectory segment. The azimuth was then used 

to determine the direction of every segment using the correspondence between the azimuth 

angle and the direction established in the previous step (see Figure 3-3). The next geographic 

operation was to find the nearest link to each inbound and outbound segment while insuring a 

matching direction between them. At this point each trajectory with an inbound and outbound 

segment, within a node buffer, is associated to two links (inbound and outbound) and can be 

expressed in terms of intersection node, origin node (from the inbound link) and destination 

node (from the outbound link). A compilation of all observed movements at the different nodes 

provides the number of times that each movement has been made. A turning movement was 

predicted to be permitted if there was at least one observation from the GPS trajectories for that 

specific movement. 
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Figure 3-5. Turning permission extraction process 
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To determine intersection movement prediction accuracy, the extracted turning movements for 

a subset of nine intersections (90 turning movements) were compared to the ground truth 

obtained from Google Maps and Street View. A sensitivity analysis was performed to assess the 

effect of sample size on prediction accuracy by evaluating prediction results for turning 

movements that have at least one and two extracted observations. 

3.4 Results 

3.4.1 Link direction extraction accuracy 

The highest link direction extraction accuracy was 95% obtained using a ratio limit value of 5%. 

In other words, a link that has a GPS segment count less than 5% of that of the reverse link can 

be considered to not exist with a 95% accuracy.  

 

Figure 3-6. Link direction prediction accuracy - sensitivity analysis 
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The sensitivity analysis results for the different ratio limit values are presented in Figure 3-6. 

Following the selection of the optimal ratio limit value (5%) an attribute was added to the initial 

modelled road network to indicate whether the directional road segment, represented by a link, 

exists or not. The resulting link representation of the road network is presented in Figure 3-7. 

Links presented in blue were determined to be non-existent since they do not have enough GPS 

segment observations compared to the reverse link (ratio < 5%). A special case is also presented 

in caption A of Figure 3-7 where the initial road network model was created as four parallel links 

(compared to two links in regular situations). This is explained by the way the simple road 

network, used as an input, represented that road. Since it has a large median, it was represented  

 

Figure 3-7. Final network model – extracted link result 
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as two lines in the simple road network and therefore understood as two different roads by 

EMME. However, the developed method was able to determine which link corresponds to an 

existing road segment and filter the non-existing links. 

Considering sample size in the prediction accuracy assessment was found to have an impact. The 

introduction of a threshold on the segment count ensured that only roads with a minimum 

number of GPS segment count were considered. The results in Figure 3-8 show that increasing 

the minimum threshold is correlated with an increase in link direction prediction accuracy. For 

example, using a minimum threshold of 200 segments for a given road segment results in a 

prediction accuracy of 98.7% as opposed to not having a minimum threshold which results in 95% 

accuracy. However, for this study area and GPS dataset, setting the highest threshold implies that 

prediction can only be made for 304 links instead of all the 674 links as seen in Table 3-1. 

 

Figure 3-8. Prediction accuracy vs. cutoff threshold 

95.0%

95.2%

95.6%

95.6%

95.7%

96.0%

97.5%

98.7%

94.5%

95.0%

95.5%

96.0%

96.5%

97.0%

97.5%

98.0%

98.5%

99.0%

0 20 40 60 80 100 120 140 160 180 200

P
R

ED
IC

TI
O

N
 A

C
C

U
R

A
C

Y 
(%

)

CUTOFF THRESHOLD (SEGMENT COUNT)

1 



3-60 
 

Threshold Number of Links 

0 674 
10 608 
20 564 
30 528 
40 514 
50 498 

100 398 
200 304 

Table 3-1. Impact of the cut-off threshold on the number of links 

3.4.2 Turning movement extraction accuracy 

After comparing the extracted turning movements (n = 90) to the ground truth obtained from 

Google maps and Street View, an accuracy of 68% was found. Meanwhile, 97% of the wrong 

predictions correspond to turning movements that are permitted within the ground truth dataset 

but for which no observation was extracted from the GPS dataset. Furthermore, the prediction 

accuracy was 98% when only turning movements with at least one observation were examined. 

However, this restriction reduced the number of turning movements for which a turning 

movement is predicted by 37 and reduces the probability of detecting prohibited turning 

movements. Lastly, prediction accuracy for turning movements with at least 2 observed 

movements was 100% but prediction could only be performed for 51% of the total number of 

turning movements. Figure 3-9 presents an example of the result for one intersection that was 

extracted with a 100% accuracy. Permitted turning movements are presented in red while the 

prohibited movements are presented in green. It should also be noted that no U-turns were 

extracted from the GPS data sample, therefore, it was not possible to determine the turning 

permissions for that turn type.  
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Figure 3-9. Extracted intersection movement permissions 

3.5 Conclusion 

In this work, we develop a method that can extract link directions and turning movement rules 

from GPS trajectory data with a high accuracy. Considering a link, corresponding to a directional 

road segment, with an observed GPS segment count of less than 5% than that of the reverse link 

is a good indicator of the absence of that road segment. This resulted in a minimal prediction 

accuracy of 95%. The performance of a sensitivity analysis on the sample size (GPS segment count 

per road segment) proved that an increase in sample size will only improve prediction results (up 

to 99 %). This level of accuracy is adequate for macroscopic models that require this type of 

information for large regions. The contribution of this method is the automatic extraction of 

directional road segments for very large regions, assuming a good coverage of GPS data 

observations. 
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At intersections, turning movement permissions prediction achieved a lower accuracy (68%) than 

link direction extraction. This is due to the lower number of observations for each intersection 

turning movement. In fact, turning movements with at least one observation were predicted at 

98% accuracy. However, 37% of the permitted turning movements did not have any observation 

extracted from the GPS data. Therefore, an increase in sample size will allow better coverage of 

intersection turning movements.  

Using this GPS dataset, it was not possible to extract network features (link directions and turning 

movements) for different times of the day simply due to the sample size. A larger dataset will 

allow for better knowledge discovery by providing a larger temporal coverage of the different 

times of day. This is of importance for road networks with varying number of lanes available for 

traffic at different times of the day. For example, some road networks have restricted lanes for 

transit use during peak periods, or for parking during off-peak periods. Similarly, some 

intersections have varying turning movement permissions by time of day for traffic optimization 

and safety purposes.  

Overall, the developed method demonstrates the feasibility of automatic road network feature 

extraction for modelling and macrosimulation purposes. This work presents the required input 

data and the proposed methodology to achieve this objective. A proof of concept was also made 

by building a road network model using the EMME software for the study area in Quebec City, 

Canada, using GPS trajectory data collected by motorists. Data tables in the EMME format were 

created, indicating which links and turns had to be removed from the base network to better 

represent real road network features within the study zone. 
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In sum large datasets of GPS points/trajectories can be used to extract road network features to 

build road network models. Extraction accuracy was found to depend mainly on the sample size. 

Therefore, the main limitation of this work is the GPS trajectory sample size. The increased use 

of GPS enabled devices and availability of larger GPS datasets will only increase prediction 

accuracy by providing greater spatial and temporal coverage. Spatial and temporal coverages 

dictate the area for which network features can be extracted and the possibility to extract 

features for different periods of the day. 

In addition to the use of larger datasets, future works include the use of machine learning 

techniques, such as classification learners, to determine intersection movement permissions. 

Additionally, future research can explore the possibility to extract more network features 

required for macroscopic modelling from GPS data, such as the number of lanes, road types, and 

link performance relationships.  Autonomous driving can also benefit from the extracted network 

features by adding them to maps used in autonomous vehicles.  
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Link Between Chapters 

In the optic of building on current tools, techniques, and data availability Chapter 3 presented a 

method to refine a simple road network model by extracting from GPS trajectory data the road 

directionality and turning movement permissions at intersections. This is the first contribution of 

this research as it enhances the output of current transport modelling tools, such as EMME. The 

proposed method is directly applicable to road networks that are designed primarily in a grid-

type layout. Applying this method to road networks that are not in a grid-type format requires 

some adjustments to account for the added complexity in the road network layout. At the link 

and intersection levels, the same logic remains applicable, however, the azimuth-direction 

relationship becomes more complex and needs to be accounted for in the 3-67evelop3-67ry. 

 At this point, the road network model is still incomplete for transport modelling purposes, it 

requires additional attributes to adequately describe the road. The following chapter 

complements the developed network model by proposing a method to determine the number of 

lanes based on the lateral distribution of observed GPS trajectory points with respect to each 

road segment. This additional attribute enables the estimation of road capacity and is used as an 

essential input of volume delay functions that estimate segment travel time during traffic 

simulation procedures.  



4-68 
 

 

 

 

 

 

 

 

Chapter 4 - Global Positioning System Data to Model 

Network-Wide Road Segment Level Number of Lanes Using 

Spatial Analysis and Machine Learning 

 

 

 

 

 

 



4-69 
 

Global Positioning System Data to Model Network-Wide Road Segment Level Number of Lanes 

Using Spatial Analysis and Machine Learning 

Adham Badran a*, Ahmed El-Geneidy b, and Luis Miranda-Moreno c 

a Civil Engineering Department, McGill University, Montreal, Canada 

(adham.badran@mail.mcgill.ca) 

b School of Urban Planning, McGill University, Montreal, Canada, (ahmed.elgeneidy@mcgill.ca) 

c Civil Engineering Department, McGill University, Montreal, Canada (luis.miranda-

moreno@mcgill.ca) 

* Corresponding Author 

4.1 Abstract 

One of the main features required in transport network modelling is the number of lanes used to 

estimate the road capacity and predict vehicular travel times based on traffic flows. Traditionally, 

the number of lanes information is collected manually or more recently extracted using computer 

vision techniques, which are two resource intensive methods. This research proposes the use of 

emerging crowd-sensed Global Positioning System (GPS) data to predict the number of lanes per 

road segment for large scale transport models through geographic operations and machine 

learning. The developed method consists of i) a spatial analysis to analyze the GPS trajectory data 

and estimate predictors and ii) a supervised machine learning model development to predict the 

number of lanes per road segment.  

It was found that the method predicts the number of lanes at an accuracy of 91% using two 

predictors: number of GPS points per road segment and a lateral distance variable containing 
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60% of the GPS data points, centered around the lateral distance distribution median. The best 

prediction model was obtained using decision trees classifier. It was also found that most of the 

local roads did not have sufficient data points to obtain a stable lateral distance distribution, 

therefore, the model was limited to a subset of road segments with sufficient observations. Given 

the availability of high spatiotemporal coverage GPS data, the method can be adapted and 

applied to large scale road network models and predict the number of lanes accurately and cost-

effectively.  

Keywords: Global Positioning System, Transport Model, Road Network, Number of Lanes, Road 

Capacity, EMME. 

4.2 Introduction 

Knowledge of the number of lanes on road segments within the transport network is essential 

for the planning and operation of the transport system. For example, conventional and 

autonomous vehicle navigation, transport modelling and simulation, road safety applications all 

require the number of lanes information as an input. In fact, lane-level digital maps are critical 

for advanced driver assistance systems and continuous research is being performed to improve 

their4-70eveloppment (C. Guo et al., 2016). Moreover, autonomous vehicle navigation requires 

prior knowledge of the road network in addition to real-time detection of the road lanes to select 

the trajectory appropriately (Bounini et al., 2015). In transport modelling, the number of lanes 

information is essential for all modelling scales. Macroscopic models include the number of lanes 

information into volume-delay functions to determine the road’s vehicular capacity and evaluate 

road segment level travel time. Meanwhile microscopic transport models consider the number 
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of lanes through lane changing models (Treiber & Kesting, 2013). Another example is the use of 

the number of lanes when analyzing pedestrian-vehicle interaction at crossings and the 

relationship with road-user safety (Kadali & Vedagiri, 2020). 

The challenge in obtaining the number of lanes information is for large-scale road networks and 

maps. In fact, local transport departments are generally uncapable to develop and maintain a 

large scale road network. The main reasons, among others, can be attributed to the 

decentralization of road network data and road network jurisdictions, the inconsistent format 

and level of the data depending on the source, and the lack of connection between transport 

planning and modelling teams with infrastructure construction teams to enable a smooth and 

timely update of the digital road network. Ideally, an entity needs to be constantly aware of the 

road network characteristics for the whole metropolitan area to be able to maintain a road 

network model, which is not the case. With the advances in technology, new data sources and 

techniques are emerging and present a potential to extract transport network-related 

information. Global Positioning System (GPS) trajectory data is being collected by different 

organizations through GPS-enabled smartphones and stored on servers using cellular internet. 

For example, the city of Montreal has provided its residents a smartphone application that 

records their trajectories for a limited period to analyze the trajectory data and improve transport 

planning and reduce traffic delays (Montréal).  

Extracting the number of lanes has been tackled in the past using different data sources. The 

most frequent method to extract the number of lanes for large-scale networks is based on aerial 

imagery and computer vision techniques. Multiple studies have been looking at extracting road 

network features automatically using different data sources. First, high-resolution imagery, in 
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combination with computer vision methods have enabled the large-scale detection and 

extraction of road network-related attributes. One of the research groups has done extensive 

work using road segmentation to detect different visible features such as the road, sidewalks, 

vegetation, buildings, and cars to augment OpenStreetMap by adding more features (Mattyus et 

al., 2015). The main challenges were found to be the presence of trees, shadows, cars, as they 

increase heterogeneity in the images in addition to misalignment issues with respect to the road 

centreline file used as a priori of road segments’ location. The same research group further 

expanded the analysis by collecting and incorporating street-level imagery in the number of lanes 

recognition algorithm which increased its prediction accuracy (Máttyus et al., 2016). Recognizing 

that collecting street-level imagery presents high collection and processing costs, they proposed 

a more resource-friendly version that only employs satellite imagery but takes advantage of new 

methodological advances in deep learning to improve the model accuracy (Máttyus et al., 2017). 

Another study has also extracted the number of lanes information from satellite imagery using 

an SVM classifier for lane identification based on brightness levels. Although they predicted the 

number of lanes at an accuracy of 100%, the experiment was only presented for six road 

segments (Tang et al., 2014). Although satellite imagery has been used to detect the number of 

lanes and improved by collecting street level high-resolution imagery, it is not without limitations. 

Data availability is limited due to the collection costs, moreover, occlusions, illumination 

variability and unmarked road lines reduce the capacity of such techniques (Kasmi et al., 2018). 

The best number of lanes prediction accuracy obtained was 83 %. 

Recent research efforts have been studying the extraction of road networks from GPS data using 

different spatial analysis algorithms. Three main approaches were used to extract road networks: 
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Clustering, intersection linking, and track alignment. For example, the work by Y. Guo et al. (2021) 

proposes a clustering method to extract road network centreline and intersections with the 

accuracy of 92%. Clustering is in fact the most popular method to extract road networks from 

GPS trajectory data. Another study by C. Zhang et al. (2019) employs the intersection linking 

method to detect the road network and intersections at an accuracy greater than 90%. Although 

not very popular, studies by Leichter and Werner (2019) and Zhongyi et al. (2018) have also used 

the track alignment method to generate road networks. However, accuracy was either low or not 

compared to the ground truth. Although these road network inference methods are able in some 

cases to extract the road network centreline and intersections with high accuracy, they do are 

not designed to extract more detailed road network features such as the number of lanes.  

Very few studies have examined the use of sole GPS trajectory data to extract the number of 

lanes. A study by Arman and Tampere (2020) proposes a method that extracts lane locations on 

a highway corridor. However, the number of lanes extracted is not explicitly validated by 

comparing to the ground truth. Therefore, no accuracy was provided. One attempt by L. Zhang 

et al. (2010) used GPS traces and a road centreline map from OpenStreetMap to improve the 

map quality and estimate the number of lanes. The main limitation was the assumption of normal 

distribution of GPS traces with respect to the road centre, which is not the case and resulted in 

number of lanes prediction accuracy of less than 60%.  

Moreover a study by Y. Chen and Krumm (2010) fits Gaussian mixture models to GPS trajectory 

data to determine the number of lanes. Although the study attempts to preserve the continuous 

nature of road segments, it is limited by the sample size and the fact that this method requires 
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prior knowledge of the number of Gaussian distributions to fit. Thus, the study resulted in 

relatively low accuracy predictions.  

In sum, the main limitations of past studies extracting the number of lanes are the high cost of 

imagery data collection and the output accuracy. In fact, the high cost reduces the frequency of 

map updates which can result in maps not representing the continuously evolving nature of the 

road network. In addition, the output accuracy of past studies can potentially be improved by 

using large-scale GPS trajectory data. 

Considering the general availability of road centreline data or algorithms to infer them from 

different data sources, the objective of this study is to propose a method that uses GPS trajectory 

data to extract the number of lanes with a relatively high accuracy. This is done through spatial 

analysis of GPS trajectory points to extract variables that feed into a machine learning 

classification algorithm that predicts the number of lanes for road segments for use in large-scale 

transport models. 

4.3 Methodology  

GPS data treatment can be divided into two main parts based on the analysis type. The first part 

of the analysis was the spatial analysis using Geographic Information System (GIS) software 

carried out in the FME software. This software was selected since it is a very efficient data 

integration platform capable of managing, combining, and transforming big data with advanced 

spatial data analysis capabilities. The second step was the number of lanes prediction model 

development and visualization carried out in MATLAB. The general assumption of this study is 

that although GPS accuracy is between 7 and 13 meters (Merry & Bettinger, 2019), GPS trajectory 
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points will be distributed around the middle of traffic lanes when the sample size is large. 

Therefore, this method proposes to determine the distance distribution of GPS points for each 

directional link with respect to a reference line and infer the number of lanes based on the 

distribution properties through a machine learning classification method. 

4.3.1 Spatial Analysis 

The first step requires raw GPS trajectory data, a road network model (links and nodes), and an 

azimuth-direction dictionary table as input. A summary of the spatial analysis steps can be seen 

in Figure 4-1. The yellow boxes present the input data sources required to carry out the spatial 

analysis steps. In this study, each GPS trajectory point had two sets of longitude and latitude 

points; raw, and map matched coordinates, which were both used at different stages of the 

analysis. 

The process can be divided into four main steps: 1. Determine the direction of each GPS trajectory 

point, 2. Remove GPS trajectory points located at intersections, 3. Associate each GPS trajectory 

point to a directional road segment, and 4. Calculate the lateral distance between each GPS point 

and the reference line. The number corresponding to each step is also presented in Figure 4-1. 

Firstly, the azimuth of each GPS trajectory point was calculated based on its location and the 

location of the consecutive point within the same trip. The azimuth is defined as the orientation, 

in degrees, between two points as the number of degrees clockwise from the north reference. 

The azimuth was selected as the measure to define trip segment directions and an azimuth-

direction dictionary was created for that purpose as seen in Figure 4-2. Map matched coordinates 

were used to calculate the azimuth to ensure consistent direction results and remove the 
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fluctuations found in raw GPS point data. Following the azimuth calculation for each point, the 

direction was calculated using the azimuth-direction dictionary.  

 

 

Figure 4-1. GPS Trajectory Points GIS Treatment Diagram 

Secondly, intersection buffers were used to remove GPS points that fall within the vicinity of 

intersections. Given that this study aims to determine the mid-block road segment number of 

lanes, the GPS trajectory points in the vicinity of intersections were removed since the number 

of lanes near an intersection is sometimes different to allow for upstream dedicated turning lanes 



4-77 
 

or downstream insertion lanes. Following visual inspection of the road network, a buffer size of 

30-meter radius with respect to the intersection centres was used to filter GPS trajectory points 

within intersection areas. This ensured that the remaining GPS trajectory points correspond to 

travel within the road segment.  

 

Figure 4-2. Azimuth-Direction Correspondence 

Thirdly, to remove noisy GPS trajectory points, a road segment (link) buffer of 15-meter radius 

was created to select GPS points associated to each link through nearest neighbour analysis. This 

buffer size was selected to ensure that the GPS points’ lateral distribution profile with the respect 

to the directional link is captured entirely while minimizing the number of outliers. This was 

validated in the following steps of the analysis by examining all lateral distance distribution 

histograms and kernel density estimators. The link direction was also obtained based on the 

azimuth to add an extra criterion when selecting the nearest neighbour and ensure that every 

GPS point is associated to the correct directional link.  
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Fourthly, the shortest distance between each GPS point and the associated directional link is 

calculated and serves in the following step develop a number of lanes prediction model. This 

distance corresponds to the length of the perpendicular line, di, between the GPS location point 

and the directional link as seen in Figure 4-3. It was the main variable carried to the next 

modelling step.  

 

Figure 4-3. Distance from Point to Link Calculation 

The location of the directional link with respect to the actual road segment is approximate since 

it is based on a simple street centreline shapefile. Moreover, for bidirectional road segments, the 

links for both directions are superimposed. This was considered while determining road segment 

buffer size. 

4.3.2 Road Segment Number of Lanes Prediction Model 

Following spatial analysis, the second part of the method consisted of creating the number of 

lanes prediction model. Assuming that road segments with different numbers of lanes have 

different GPS trajectory data characteristics (such as spatial distribution pattern and number of 

points), roads with different numbers of lanes are seen as distinct categories and the question is 

formulated as a number of lanes classification problem. A classification model was calibrated 

using input variables derived from GPS trajectory points data to output the number of lanes for 
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each road segment. For each road segment, input variables were compiled following the spatial 

analysis part and were used to train the model to predict the number of lanes as a categorical 

variable. The two main GPS trajectory points descriptors, used to derive input variables to the 

classification tree model, were the lateral distance di and the number of points per directional 

road segment. A frequency histogram and a kernel density estimator were fitted to the distance 

variable to visualize the distribution with respect to the reference line (directional link) and 

determine model parameters. First, it was observed that for some of the links, sample size was 

too low and resulted in unstable and unmeaningful distributions. Following inspection of the 

kernel density estimators and frequency histogram, the sample size was limited to a minimum of 

500 GPS points per directional link to produce stable results in terms of distribution shape. Road 

segments with fewer GPS point observations were removed. 

Based on the observed distributions and preliminary tests and aiming to create variables that 

reflect the lateral distribution of GPS trajectory points with respect to the link, distance 

percentiles, dipc, were calculated for different percentiles, i, of 5%, 10%, 15%, 20%, 80%, 85%, 

90%, and 95%. To standardize these values and render them comparable across different links, 

new variables were created by calculating the variable Dp defined as the lateral distance 

containing a proportion, p, of the GPS points data. Dp is calculated using lateral distance 

percentiles to ensure that this new variable is centered around the median distance value. The 

following are the lateral distance variables that were calculated: 

𝐷90 = 𝑑95𝑝𝑐 − 𝑑5𝑝𝑐 

𝐷80 = 𝑑90𝑝𝑐 − 𝑑10𝑝𝑐 
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𝐷70 = 𝑑85𝑝𝑐 − 𝑑15𝑝𝑐 

𝐷60 = 𝑑80𝑝𝑐 − 𝑑20𝑝𝑐 

For example, D60 corresponds to the difference between the 80th percentile distance and 20th 

percentile distance, therefore it contains 60% of the GPS points data. A visual illustration is 

provided in Figure 4-4. The number of GPS points per link and the standard deviation of lateral 

distance per link were also calculated to be tested in the model specification. 

Following the creation of the variables for each road segment, supervised machine learning 

classification methods were tested. In fact, classification tree analysis was carried out to 

determine if it can create an accurate model that can be used for prediction. This method is a 

good option when ground truth data is available for the learning step. Moreover, it is non-

parametric and does not require prior knowledge of the distribution of each variable. Another  

 

Figure 4-4. Example of Percentile Visualization 



4-81 
 

advantage of this method compared to other machine learning techniques such as neural 

networks classification is its transparency which makes the model easy to interpret (Ian et al., 

2017).  

To ensure protection against overfitting, model validation was carried out using a 5-fold cross-

validation. This validation method divides the dataset randomly into five groups. At each step, 

one of the five groups is held out to be used for validation while the other four groups are used 

to train the model. Once the model is specified, it is used to make predictions on the group that 

was held out. For a 5-fold cross validation, this process is repeated five times.  

4.3.3 Data 

Three main input datasets are used: 1) GPS trajectory points, 2) Modelled directional road 

network (links and nodes), and 3) Google maps and Street View. GPS data was collected during 

the spring of 2014 in Quebec City, Canada. It was collected for 21 days by 2000 voluntary users 

through the Mon Trajet smartphone app, made available by the Municipality. Each point is 

described by the following attributes: map matched X and Y coordinates, trip ID, speed, and 

timestamp (Year-Month-Day-Hour-Minute-Second). Following the preprocessing steps, 245 links 

were selected as the experimental data to model number of lanes, which included 120 000 GPS 

points (excluding GPS points within the intersection buffers). This study area was selected based 

on its urban setting since it is in the city centre where more GPS trajectories were available. Figure 

4-5 presents a sample of the study area where part a shows the raw GPS trajectory points, and 

part b shows the processed GPS trajectory points for the same road corridor following spatial 

analysis steps 1 to 3. In part b of the figure, GPS trajectory points are colored differently 

depending on the link to which they were associated.  
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Figure 4-5. Sample of GPS Points Data in Study Area - Before and After Spatial Processing 

The directional road network was created using an initial road centreline shapefile which was 

converted in a network model compatible the EMME transport modelling software to obtain 

directional links and augmented using the same GPS trajectory data to ensure that road topology 

and connectivity are valid. Each link is defined by an origin and a destination node. The possible 

number of lanes per directional link was one, two, or three lanes, for which the ground truth was 

manually extracted using Google Maps and Street View.  

For a given road segment, it is important to note that the number of lanes available for traffic 

can vary spatially and temporally. The presence of lanes dedicated to transit vehicles or high-

occupancy vehicles at a fixed schedule on concerned road segments reduces temporally the 

number of lanes available to general traffic. This is also the case for lanes that are used for parking 

at fixed schedules. Throughout a road segment, the number of lanes can also change spatially. 

For example, it is common to see a higher number of lanes at the two extremities of a road 

segment to allow for traffic insertion and for dedicated turning lanes. The complex nature of 

traffic lanes can be seen in Figure 4-6 where a reserved bus lane (highlighted in green) is present 
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at a fixed schedule and the number of lanes at the intersection level is different (usually greater) 

than the mid-block number of lanes to accommodate turning movement flows. This paper 

examines the mid-block number of lanes and does not consider reserved lanes.  

 

Figure 4-6. Example of a Complex Road Geometry 

4.4 Results 

With the proposed steps and parameters, it was possible to extract GPS points for road segments 

and associate each point to the correct directional link based on the trajectory direction. The 

sample size filter limited the number of analyzed directional links included in the analysis to 43 

links. The buffer sizes were also validated based on the frequency distributions of GPS points’ 

lateral distance with respect to the link since the entire distribution profile is captured. This can 

also be noted in Figure 4-7 which presents the kernel density estimator fitted to the lateral 

distance variable distribution for six different links of varying number of lanes. The sample size, 

N, and the 𝐷60 values are also presented for each link.  

In addition to the distribution profile of lateral distance, the figure also demonstrates the 

significant difference in the distribution profile between links having one, two, and three lanes. 

Through observation, it was possible to identify that road segments with fewer lanes have lower 

values of N and smaller D60 values. This can be explained by the fact that roads with fewer users 

are designed to have fewer lanes, and GPS points are concentrated in a narrower area.  
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Model specification was carried out to determine the best model and best predictors for the 

number of lanes. Given the relatively low number of road segments, a 5-fold cross-validation 

method was performed to avoid overfitting the data (which signifies that approximately 96 000 

GPS points are used to specify the model and 24 000 points to validate the prediction). The 

highest classification prediction  
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Figure 4-7. Sample Kernel Density Estimator of Lateral Distance for One, Two, and Three Lanes 

accuracy was found using a decision tree classifier at 91% using two predictors, the sample size 

N and D60. The optimizable decision tree classifier tested iteratively different numbers of splits 

and different split criteria to reach the minimum classification parameters and error. 
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Figure 4-8 presents a plot of the two selected predictors, showing a clear delimitation between 

the predictor values for roads with one, two, or three lanes. Moreover, the optimized decision 

tree is presented with the three split levels and values in Figure 4-9. Ensemble classifiers, such as 

boosted trees, bagged trees, and subspace discriminant were also tested to improve prediction 

accuracy and the best accuracy was using the subspace discriminant ensemble classifier at 91%. 

Given that the optimized decision tree was able to predict at the same accuracy level it was 

selected as the best model in this case since it is simpler to visualize and interpret.  

 

Figure 4-8. D60 vs. Sample Size (N) 
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Figure 4-9. Selected Classification Decision Tree 

4.5 Discussion 

The proposed methodology predicts the number of lanes per road segment based on the number 

of GPS points associated to the link and the difference between the 80th and 20th percentile 

distance, representing a lateral distance measure centered around the median lateral distance.  

Given that the best prediction model was obtained using only two variables, an optimized 

decision tree classifier was sufficient to reach a good model accuracy (91%). However, adding 

new variables will require retesting ensemble classifier methods to verify if they are able to 

improve prediction accuracy. Moreover, to use this model, the sample size would need to be 

translated into relative terms or to be specified with respect to the sample size corresponding to 

a new dataset. The main hypothesis behind using the sample size as a variable is that for a given 
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period of data collection where we assume a representative sample, it is expected to have a 

larger number of observations for road segments with a larger number of lanes since they 

generally have a higher traffic flow.  

The spatial analysis and model specification steps were limited by the experimental data 

available. During the study, it was found that some of the GPS points were map matched in their 

raw form which signifies that they were snapped to a road centreline at a step prior to accessing 

the data. Given that this study examines the lateral distribution of raw GPS points with respect 

to the road link, map matching has a negative impact on data quality. It was also noted that some 

links had a low number of GPS points, which resulted in unstable lateral distance distribution 

profiles. 

Ideally, larger datasets of uniquely raw GPS points need to be used to have a larger coverage to 

obtain more realistic distributions and potentially create more predictor variables. The objective 

is to have more GPS points per link, not necessarily more links as it will also become more 

complex to obtain the ground truth information. An increase in the number of points per link will 

also increase the probability of having better coverage for different times of the day, which 

enables model specification for different time periods to detect the change in the number of 

traffic lanes temporally.  

Although some studies have proposed the extraction of the number of lanes using satellite and 

street-level imagery with a relative high accuracy, they are not without limitations (Kasmi et al., 

2018; Máttyus et al., 2016; Nieroda et al., 2022). In fact, the high cost of imagery data collection 

is an important limitation that is overcome in this study since GPS data is currently being crowd 
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sensed by location-based applications through smartphones. Furthermore this study considers 

43 road links for model specification which is a larger sample than the work by Tang et al. (2014) 

which only considers 6 road segments for the analysis.  

Comparing this study to some studies using GPS data to extract the number of lanes, the 

prediction accuracy significantly exceeds the 60% accuracy obtained in the study by L. Zhang et 

al. (2010). In addition, the method proposed in the current study provides more accurate results 

and a simpler procedure than the studies by Y. Chen and Krumm (2010) and Arman and Tampere 

(2020) to obtain the number of lanes for integration in large-scale transport models. 

4.6 Conclusion 

This study proposes a method to predict the number of lanes per road segment using crowd 

sensed GPS trajectory data as an input in addition to a simple geographic representation of the 

road network. The proposed framework is composed of two main steps: to predict the number 

of lanes of road segments using GPS trajectory data while aiming to keep the cost low and to 

obtain high prediction accuracy.  

The first step is a spatial analysis process to filter and prepare the GPS trajectory data for variable 

creation. Due to the noise inherent to GPS trajectory, it was crucial to ensure that raw GPS data 

points were filtered using buffers. This is also necessary to account for the specificities in road 

design and for the discrepancies in the road network geographic representation. This step also 

served to produce variables necessary to derive the predictors for the following step. The two 

main variables were the number of GPS points per road segment and the lateral distance 

between each point and the reference line representing the road segment. The second step is 
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the training and validation of a machine learning method using classification tree analysis and 

ensemble learning. Standardized predictors were derived from the lateral distance variables to 

ensure that the values are comparable across different road segments.  

This study was able to develop a road segment number of lanes prediction model using GPS 

trajectory point data with an accuracy of 91% using a decision tree classifier and two predictors. 

This prediction accuracy is higher than prediction results obtained by previous research. This 

finding demonstrates that it is possible to extract the number of lanes available for general traffic 

by using crowd-sensed GPS trajectory data. This will facilitate road transport network model 

development and update. The proposed method was demonstrated using a case study in Quebec 

City, Canada.  

However, the work is not without limitations and can be further developed by having a larger 

temporal sample coverage to enable the prediction of the number of lanes for different periods 

allowing the detection of dynamic reserved lanes or parking lanes. This study used manually 

collected ground truth data which limited the size of the study area, network coverage for model 

development and validation will be increased in future works by collecting more ground truth 

data or obtaining this information from another source.   Moreover, it is possible to explore 

adding land use variables that might be correlated with the number of lanes and help in 

improving the prediction model’s accuracy. The potential of this method can also be maximized 

by automating a procedure that can use GPS trajectory points and other basic input files to create 

a road network containing the number of lanes per road segment.  
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Eventually, with the arrival of autonomous vehicles, new data sources may also be available in 

terms of geotagged imagery data that can be automatically collected and treated by these 

vehicles during their operation. These processed images may in the future be used to mine road 

network features at a low cost and high accuracy. 
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Link Between Chapters 

Chapter 4 proposed a method to enhance the road network model developed in Chapter 3 by 

extracting the number of lanes of road segments based on GPS trajectory points related 

predictors. A two-step procedure composed of a spatial analysis method and a machine learning 

modelling technique were able to predict the number of lanes at a high accuracy, convenient for 

large scale transport models. To complement the developed road network model, Chapter 5 

proposes a method to determine the road intersection control type based on the same GPS 

trajectory points dataset. Knowledge of the intersection control type is useful in the transport 

model development process as it can increase its accuracy by better adapting the volume delay 

functions used to estimate travel time on the road segments. It will enable the development of 

volume delay functions per intersection control type to reflect the difference in vehicle dynamics. 

 

 

 

 

 

 

 

 



5-96 
 

 

 

 

 

 

 

 

 

Chapter 5 - Inferring Road Intersection Control Type from 

GPS Data 

 

 

 

 

 

 

 



5-97 
 

Inferring Road Intersection Control Type from GPS Data 

Adham Badran (adham.badran@mail.mcgill.ca),  

Ahmed El-Geneidy (ahmed.elgeneidy@mcgill.ca) 

Luis Miranda-Moreno (luis.miranda-moreno@mcgill.ca) 

McGill University 

5.1 Abstract 

Transport modelling requires accurate and usually hard to find intersection control rules. The 

widespread use of smartphone applications enabled the automatic collection of road network-

related data that can contribute to and improve transport modelling. Global Positioning System 

(GPS) point data collected in Quebec City, Canada, was used to develop a model inferring 

intersection control type (traffic light, stops on all approaches, or stops on the secondary 

approach). Data was used to train and validate supervised machine learning classification models. 

The developed model predicted intersection control types on a validation dataset with a 96% 

accuracy. This work presents the best predictors for intersection control type.  

Keywords: GPS, Transport Model, Road Network, Intersection Control, Map Inference 

5.2 Questions 

Transport Modelling requires large quantities of data, depending on the project size and level of 

detail. For example, building a mesoscopic or microscopic model for a neighbourhood, requires 

detailed road geometry, road type, origin-destination transport demand, and intersection control 

type and traffic light phasing, to name a few. The work by Barceló et al. (2010) presents different 

mailto:adham.badran@mail.mcgill.ca
mailto:ahmed.elgeneidy@mcgill.ca
mailto:luis.miranda-moreno@mcgill.ca
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data collection efforts to estimate travel demand, traffic state, and traffic performance. 

Additionally, Antoniou et al. (2018) discusses the integration of big data and machine learning in 

transportation.  

Depending on the modelling needs and available resources, data is collected by different means 

and for different sample sizes. Global positioning system (GPS) data is now collected by 

widespread communication devices such as smartphones. These devices provide their 

geographic location and a timestamp at a predetermined high-resolution frequency offering new 

information that can help in determining road network features.  

This work develops a method to infer road intersection control type from GPS points. Such 

information can be of value for transport modelling when the study area is large, and data cannot 

be collected as efficiently using traditional observation methods. 

5.3 Methods 

The primary data source consists of GPS trajectory points, collected during the fall of 2014 in 

Quebec City, Canada. Data was collected during 21 days by 2000 voluntary users through the 

Mon Trajet phone app, made available by the city. Each trajectory consists of consecutive GPS 

location points recorded by the app every second. Each point is described by the following 

attributes: X and Y coordinates, trip ID, instantaneous speed, and timestamp (Year-Month-Day-

Hour-Minute-Second). Figure 5-1 is a map of the raw GPS points (226,000 points) inside the study 

zone, which consists of 81 intersections. The location and control type of all intersections were 

also obtained from the municipality for model calibration and validation. Four different control 

types were available: traffic light, all-way stop, east-west stop, north-south stop.  
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First, the intersection locations within the study area were determined using the road network 

and a 20-meter buffer was created around each intersection. The buffer size was determined by 

examining the road geometry and the spacing between intersections. In fact, the selected buffer 

size was able to capture all vehicles that are passing through any given intersection without 

having overlapping buffers. However, some buffers were merged for intersections that are very 

close to each other and operate as one intersection. The GPS data points were then filtered to 

only keep the points within the intersection buffers. The final sample size was 81,000 GPS points 

located within the 127 intersection buffers. At this point, all filtered points for a given trip within 

an intersection were converted into directional lines representing intersection movements. The  

 

Figure 5-1. Raw GPS Points in Study Zone 
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intersection movements were then used to determine the inbound and outbound directions for 

each movement. For a given intersection, trip segment within an intersection buffer area (see 

Figure 5-2 (a) for the direction definition specific to the study area). 

The calculated attributes, inbound direction, and outbound direction were then added to the GPS 

data points. The intersection control type attribute was also added to the GPS data points to act 

as the ground truth. For each trip segment within an intersection buffer, the delay (D), in seconds, 

was calculated using the following equation: 

𝐷 =  𝑇𝑜𝑢𝑡 −  𝑇 𝑖𝑛 

where Tin is the time stamp of the first point to enter the buffer area and Tout is the timestamp of 

the last point before exiting the buffer. Following data compilation, the result was a final 

database containing attributes at the approach level (northern, southern, eastern, or western 

approach) and at the intersection level. Figure 5-2 (b) illustrates the nomenclature for 

approaches and movements used in this paper. At the approach level, the following variables 

were calculated: average speed, standard deviation of speed, minimum speed, maximum speed, 

trip count, average number of points per trip within the buffer, and average delay. For example, 

trip count was calculated for each of the four approaches, to know the number of trips that are 

entering the intersection through each leg. At the intersection level, one speed related variable 

was calculated: the percentage of points with a speed of less than or equal to 5 km/hr. The 

developed explanatory variables were based on the expected difference in speed profiles and 

traffic intensity at intersections of different control types. For example, a traffic light-controlled 

intersection is expected to serve higher intensity traffic conditions than an all stop intersection. 
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Therefore, the trip count variable can be significant in differentiating between these two control 

types. Moreover, at an all-stop intersection, the approach speed is expected to be very low for 

all the vehicles, while at a traffic light-controlled intersection, some vehicles may not need to 

decelerate if their approach has a green light. This is expected to be reflected in the different 

speed variables. Other data disaggregation levels that are expected to show significant difference 

per intersection control type are specific times of day were traffic performance is impacted, such 

as peak periods, and specific turning movements, where distinct movement speed profiles may 

be an indication of a specific control type.  

Data processing and manipulations were performed using the FME software, visualizations were 

produced in QGIS, and model specification and validation were performed in MATLAB. Different 

model specifications were tested to find the best model to predict intersection control type. 

Although only the best model specification results are discussed in this paper, the following.  

 

Figure 5-2. Definition of Direction (a), Movements and Approaches (b) 
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models were tested at the intersection level: 

• Speed and count attributes for all week 

• Speed and count attributes for workday AM peak period 

• Speed and count attributes per approach for all week 

• Speed and count attributes per movement for all week 

• Delay and count attributes per movement for all week 

Two supervised machine learning classification techniques were tested: decision trees and 

nearest neighbours. The classifiers were trained using 80% of all intersections within the data set. 

The model was then applied to the remaining 20% of the intersections (validation dataset – 25 

intersections) to predict the control type. The model prediction was compared with the ground 

truth to assess the accuracy and select the best model using the validation dataset. 

5.4 Findings  

It was found that the best predictors of intersection control type were average speed per 

approach, standard deviation of speed per approach, maximum speed per approach, trip count 

per approach, and the percentage of points having a speed lower than or equal to 5 km/h per 

intersection. Table 5-1 presents the average values of the significant approach-level variables 

over all the study area intersections. These variables were able to distinguish between the speed 

and trip count characteristics specific to each control type. For example, the average speed 

approaching an intersection was a significant indicator in determining if an all stop control, stops 

at the secondary approach, or a traffic light was present as they have different average speeds. 
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A higher average speed was observed for approaches that are controlled by traffic lights or that 

are uncontrolled. In addition, trip count was a good indicator of control type since traffic lights 

have higher observed trip counts than all stop-controlled intersections, because traffic lights are 

usually implemented at higher traffic intersections. Intersections with stops on the secondary 

approaches also have a significantly higher trip count on the main approaches compared to the 

secondary approaches, which classifies them in their own category. Since the variables were 

compiled per approach, it was possible to predict on which approaches were the stops located 

(E-W or N-S). Moreover, standard deviation of speed was found to be a good determinant of 

control type since it reflects the different classes of variability in speed for different control types. 

It is seen that stop controlled approaches have a lower standard deviation, because all vehicles 

are coming to a stop, while traffic light-controlled approaches have a higher standard deviation 

due to the higher variability in speeds caused by the traffic light colour. Finally, the maximum 

speed was found to be the highest for traffic light-controlled approaches, followed by 

uncontrolled approaches, and then stop-controlled approaches, which was significant in 

discriminating between intersection control types. The higher maximum speed of traffic light-

controlled approaches compared to uncontrolled approaches, is that a green light ensures that 

the driver has the right of way and traffic lights are usually implemented on higher capacity roads 

that usually have higher posted speeds less traffic calming measures.  

The best predictions were obtained using all weekdays data set using the nearest neighbours 

classifier. The model predicted the intersection control type with the accuracy of 96% for the 

validation dataset. Figure 5-3 presents a confusion matrix showing the prediction error for the 

validation intersections using the best model. 
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Control 
Type 

Std 
Dev. of 
Speed              
West 

Std 
Dev. of 
Speed             
South 

Std 
Dev. of 
Speed                  
North 

Std 
Dev. of 
Speed              
East 

Max. 
Speed 
West 

Max. 
Speed 
South 

Max. 
Speed 
North 

Max. 
Speed 
East 

All-Way 
Stop 

0.55 2.49 1.91 2.20 5.71 15.01 15.65 14.75 

E-W Stop 1.94 7.15 6.63 0.90 8.90 33.68 31.91 10.06 

N-S Stop 5.71 1.37 0.82 4.21 30.84 3.74 7.80 32.49 

Traffic Light 10.56 6.40 6.74 10.27 45.64 28.31 27.76 52.70 

Control 
Type 

Avg. 
Speed 
West 

Avg. 
Speed 
South 

Avg. 
Speed 
North 

Avg. 
Speed 
East 

Trip 
Count    
West 

Trip 
Count    
South 

Trip 
Count     
North 

Trip 
Count     
East 

All-Way 
Stop 

4.81 11.60 12.42 11.60 4.95 11.95 10.21 5.58 

E-W Stop 6.92 23.30 22.65 9.10 2.26 26.16 34.68 1.58 

N-S Stop 22.67 2.52 7.11 23.60 40.47 0.68 0.95 41.79 

Traffic Light 26.57 14.91 16.71 28.98 89.58 23.42 29.42 100.89 
Table 5-1. Average of Approach Variables’ Values per Control Type Over All Intersections 

Developing the model based on the AM peak period of workdays reduced the total sample size 

considerably, resulting in a low prediction accuracy. In addition, introducing the detail of all 

intersection movements (inbound and outbound direction) in the model, also reduced the 

model’s prediction power.  

For projects requiring a higher prediction accuracy, the model can potentially be improved by 

using a larger sample size to train it. A larger sample size enables the model to have a higher 

resolution and examine the data patterns in more detail. In addition, since traffic conditions have 

significantly different characteristics during different times of the day/week, developing a model 

based on homogeneous temporal characteristics might improve the prediction accuracy if a 

larger sample is available. Another potential avenue would be to test different model types. In 

sum, GPS data has a great potential to infer transport network variables for areas where such 

data is not easily available. 
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Figure 5-3. Confusion Matrix 
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Link Between Chapters 

In Chapter 5, the developed road network model was enhanced by extracting road intersection 

control type from GPS trajectory data. It is expected that this method can be generalized to a 

larger road network to predict intersection control type. The preferred method would be to train 

a model using GPS data obtained from the same region for which the prediction needs to be 

carried out. The model can further be expanded by including more intersection control types, 

such as yield controlled approaches. 

The contribution of Chapter 5 is built upon in Chapter 6 to classify the road intersections with 

respect to the control type and develop turn penalty functions per road type, per intersection 

type, and per turn type. Considering the intersection control type allows to reflect the difference 

in vehicular dynamics for each type of intersection control. This has been demonstrated in 

Chapter 6 since vehicle speed-related attributes were found to be good predictors of intersection 

control type. Finally, Chapter 6 presents a method to develop intersections turning movement 

penalties based on GPS trajectory data and integrate the findings in large scale transport models.  
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6.1 Abstract 

Developing accurate large-scale transportation models, used to guide policy adoption and 

evaluate infrastructure alternatives or changes in sociodemographic conditions, is data and 

resource intensive. This research proposes a novel method for modeling intersection movement 

delay using crowd-sensed Global Positioning System (GPS) data. This is achieved by providing a 

general definition of turning movements and extracting travel times from GPS trajectory data 

analysis. Additionally, a straightforward method is proposed to integrate the observed delays per 

movement type into volume-delay functions. The spatial definition provided for turning 

movements captured distinct speed profiles per turn type. The significant differences in mean 

speeds for different turn types highlights the importance of integrating turn penalty functions 
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based on real observations and underscore the importance of crowd-sensed GPS data. A simple 

technique is also proposed to integrate the proposed method into the volume-delay functions 

used in large scale transport models.  

Keywords: Intersection Delay Model; Macroscopic Model; Turn Performance Function; Global 

Positioning System, Transport Planning. 

6.2 Introduction 

Transport models are decision-making tools used to evaluate current system conditions and 

propose modifications to it to optimize its performance (Jacyna et al., 2014). They assist in 

evaluating the impact of policies, sociodemographic changes, and infrastructure projects on the 

transport system (Wegener et al., 1991). Large-scale transport models, known as macroscopic 

transport models, consist of three components: i) the supply, a digital representation of the 

transport network for all modeled transport modes, ii) the transport demand, representing all 

the trips that need to be made, and iii) the performance, depicting network conditions when the 

demand is assigned to the transport network reflecting the influence of demand on route choice 

and traffic conditions (Ortúzar and Willumsen, 2011). Road network performance is usually 

evaluated by examining travel time delays on road segments and at intersections (Ledezma-

Navarro et al., 2018, Sun et al., 2014). Delays at intersections originate from two main sources, 

traffic signals and turning movements. Turning movement delay at intersections depends on 

multiple factors, such as the number of approaches, intersection control type, intersection size, 

number of conflicting movements, traffic intensity, presence of dedicated turning lanes, and 

traffic signal phasing and timing (in presence of traffic lights)(HCM, 2022). Acquiring data for all 
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these variables at a regional level is challenging and even more complex to maintain up to date. 

Due to the complexity of developing such models, some modelers rely on major assumptions 

regarding turn penalty functions that represent turn movement delays in macroscopic models or 

use generic penalties that represent turning movement delays with sufficient accuracy. The 

impact of these inaccuracies is directly reflected in the route choice results since the generalized 

cost is mostly based on delays or travel times, which can lead to misleading results. This weakness 

has also been identified by Abedini (2022) who proposed a data-driven method to calibrate more 

accurate link performance functions. 

Recently, Global positioning systems (GPS) trajectory data has been collected by GPS enabled 

smartphones, creating large databases of GPS trajectories. This emerging data source has the 

potential to provide high-resolution and high-coverage information about the observed 

motorist’s speed or travel time throughout the road network, offering an opportunity to improve 

the current macroscopic modelling practice. The objective of this work is to demonstrate the 

potential of crowd-sensed GPS data to accurately model road intersection turning movement 

delay, using as a case study dataset from Quebec City, Canada. It also aims to show how such 

information can be integrated into large-scale simulation models to provide more accurate 

intersection delay functions. This is achieved through the adoption of a replicable and 

standardized procedure to calculate the average speed per turning movement. Average speed is 

selected since large-scale transport models are deterministic and represent an average day. This 

method is not adapted for use with dynamic traffic assignment models since it does not model 

turning movement delay as a random variable. The case study examined in this paper examines 
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the turning movement delays at traffic signal-controlled intersections of arterial-arterial or 

arterial-collector type roads. 

6.3 Literature Review 

Intersection delay estimation and modelling, using GPS trajectory data, has been addressed in 

multiple studies (Jiang and Zhu, 2005, Ko et al., 2008, Strauss and Miranda-Moreno, 2017). These 

studies can be categorized based on the examined transport mode (car, bus, or bicycle).  

Strauss and Miranda-Moreno (2017) conducted a study using crowd-sensed GPS trajectory data 

in Montreal, Canada to estimate performance measures at signalized intersections. They 

developed models to relate bicycle intersection delays to predictors such as intersection 

geometry and built environment. While this work provides detailed steps in GPS data processing, 

it confines the analysis to the approach and intersection levels without exploring detailed 

intersection movements. Another study by Gillis et al. (2020) used crowd-sensed cyclist GPS 

trajectory data to determine road intersection delays. This research focuses on the main cyclist 

movements across the intersection and emphasizes the importance of having an adequate 

sampling rate to capture details before and after the intersection. The main limitations of the 

two studies examining cyclist GPS data are the fact that they do not consider the impact of traffic 

flow on delay and that they do not propose a standardized method to extract delays at the 

intersection movement level. 

Using real-time bus GPS trajectories, Wang et al. (2016b) proposed a method to predict 

intersection delays and bus arrival time. This method, designed for real time use, does not 

explicitly consider intersection movements, making it inapplicable for macroscopic transport 
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models. Another study by Wang et al. (2016a) uses low-resolution transit bus GPS data to 

estimate control delays; however, it does not consider turning movements. In addition, using bus 

GPS data to estimate control delays cannot be used to represent the dynamics of the general 

population of motorists, as it may be biased due to differences in vehicle characteristics and the 

presence of bus stops, which can create additional delays.  

One of the most used methods to estimate intersection movement delays is proposed by the 

Highway Capacity Manual (HCM). It combines three models: uniform, random, and overflow 

delay models. This method can be seen in the work by Leong (2017)  and requires the collection 

of signal phasing and timing information, in addition to intersection configuration. Although this 

method can yield good results, it requires significant data collection efforts for large-scale 

models, limiting its suitability to small-scale models. 

Other studies have explored the use of passenger vehicle GPS trajectory data to estimate delays 

while reducing data collection efforts and having a satisfying accuracy level. In fact, a study by Liu 

et al. (2006) investigated the effect of different GPS trajectory sampling rates on delay estimation 

quality and the ability to capture the delay. This study focused on reducing the cost of real-time 

data transmission and does not propose a method to estimate or model intersection movement 

delays.  

In another study, Alkaissi et al. (2021) conducted an experiment by instrumenting a vehicle with 

a GPS device to record 50 trips through an arterial corridor. Based on speed and acceleration, 

they were able to determine delays at intersection; however, the study only considered a limited 

number of trips and did not examine delays from movements at the intersection.  
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Intersection delay estimation techniques were examined based on a theoretical framework of 

vehicle dynamics. In a study by Jiang and Zhu (2005), a GPS-equipped vehicle was used to collect 

trajectory data, proposing a method to calculate the approach delay. The approach delay is 

defined as the difference between the actual time for the vehicle to pass the intersection and the 

time it would take to pass the intersection at the driver’s desired speed. This delay can be 

estimated by measuring different various components such as stopped delay, control delay, 

approach delay, midblock delay, or segment delay. A variation of this technique was explored by 

Hoeschen et al. (2005). However, these measures remain limited to traffic signal operation 

applications and only consider delays at the intersection approach level.  

Intersection delay is crucial information for assessing intersection control performance and 

determine the level of service (LOS). Tišljarić et al. (2018) estimated intersection control delays 

based on GPS trajectory points by locating the first deceleration and stopping points upstream 

on the intersection. The information was also used to create a queuing profile for the examined 

intersections. However, this technique was limited to the approach level and the queuing profiles 

were not compared to ground truth for validation.  

When studying delay modelling, understanding the level of detail required depends on the model 

type and the capabilities available in transport planning and modelling software to be able to 

produce results that can be integrated to the modelling tool. Macroscopic models integrate 

intersection movement delays differently depending on the modelling tool used. For example, 

the Aimsun simulation software divides delay into three different components: link delay 

functions, turn penalty functions (TPF), and junction delay functions (JDF). TPF and JDF are used 

for traffic signal-controlled intersections and stop or yield controlled intersections, respectively. 
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The TPF is also capable of using the programmed signal timing plan to estimate macroscopic level 

delays based on green time, cycle duration, and equations provided in the Highway Capacity 

Manual. Although this possibility is interesting, integrating and maintaining all signal timing plans 

for different time periods and for a whole metropolitan region requires important resources and 

is generally not feasible.  

Other tools used for macroscopic modelling, such as EMME or Visum also offer the possibility to 

add turn penalties for each possible movement at an intersection. However, the challenge 

remains in finding the correct values or functions that represent the observed conditions 

adequately. Due to limited resources, in practice, this usually results in the oversimplification of 

turn delay modelling by assuming fixed generic values or even by limiting turn modelling to 

simple turning permissions indicating whether each movement is permitted or prohibited.  

In summary, intersection delay was studied by multiple researchers using GPS trajectory 

collected by different transport modes, such as bicycles, buses, and passenger cars. Depending 

on the study objective, delay was defined differently in terms of spatial or temporal resolutions 

(intersection level or approach level) to obtain indicators used for traffic signal control operation 

and optimization. However, additional work is required to explore crowd sensed GPS data and 

develop methods that consider delays at the intersection movement level without the knowledge 

of signal phasing and timing or signal groups. This is essential to model turning movement delays 

for large-scale models. Therefore, this work proposes a framework and method to extract 

intersection movement delays for use in large-scale transport models from GPS data, avoiding 

the use of data that is difficult to obtain or collect.  
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6.4 Methodology 

Definitions 

Before describing the theoretical framework and the proposed method, it is important to define 

a few terms. An intersection turning movement refers to a possible vehicular movement at an 

intersection, usually described by the direction and the turn type (Board et al., 2022). Intersection 

turn type refers to the maneuver performed at the intersection, which can be left turn, through 

movement, or right turn. Although delay and speed are two different concepts, this work 

interchangeably uses the two words. Since the proposed method needs to be applicable to 

intersections of different dimensions, speed was calculated instead of delay to eliminate the 

distance dimension and reduce the bias. This is important for the proposed method, as it includes 

the upstream segment travel time in the delay (speed) calculation. Calculating a typical delay 

value for all types of intersections would incorrectly assume that all intersections have the same 

geometric configurations and upstream road segment length.  

To capture the average delay incurred by a vehicle associated with a given turning movement 

and keeping in mind the macroscopic aspect of the transport model, it was important to have an 

adequate definition of intersection movements. For each intersection, an intersection zone is 

defined as the area containing the road intersection in addition to all the upstream and 

downstream road segments that connect the given intersection to the neighboring intersections 

(see Figure 6-1).  

Moreover, the start and end points for each movement type (left turn, through movement, and 

right turn) are defined as seen in Figure 6-2. The start point of every movement is the entrance 
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point of the upstream road segment (LTStart, TStart, RTStart). The movement end point is the point 

where the vehicle exits the analyzed intersection (LTEnd, TEnd, RTEnd). Defining the start and end 

point of every movement enables the calculation of length of each of the left, through, and right 

movements, which are LLT, LT, and LRT, respectively. This definition makes it possible to 

differentiate between delays of vehicles performing different movement types. In a similar logic, 

the traffic flows for each of the movement types are referred to as FLT, FT, and FRT, representing 

flows for left turn, through, and right turn movements, respectively. Connecting back to 

macroscopic models, it becomes possible to adjust turn penalties based on real observations 

while considering mid-block traffic delays due to traffic propagation associated with the 

downstream control type and turning movement type.  

Proposed Procedure 

The method proposed by this work uses GPS trajectory points, traffic counts, and a road network 

geographic representation to create an integrated database containing, for each intersection 

movement, the mean 15-min speed and the corresponding 15-min traffic count. Figure 6-3 

presents a summarized diagram of the procedure used to create the traffic count-speed 

database.  

The yellow boxes represent input data while the grey rectangles represent data processing steps, 

and the green cylinder represents the final output database. 

The first step consists of spatially filtering the map-matched GPS trajectory data to allow only 

relevant data points to be kept and reduces the size of the database. This step is required to only 

keep the required GPS points and avoid working with a large data file. The second step is to 
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manually select, for each trip segment within the intersection, the first point (LTStart, TStart, RTStart) 

and the last point (LTEnd, TEnd, RTEnd). Each trip within an intersection zone is visually inspected to 

verify if its start point and end point are located at an acceptable distance of the theoretical start 

and end points defined above. This step is carried out manually and is labor intensive given the 

large number of trips per intersection. At the third step, the trip ends’ timestamps and the 

geographic coordinates are extracted to create a polyline representing the turn movement of 

each trip segment within the intersection. The fourth step connects the trip ends using the 

shortest path algorithm over the digital road network. The process allows the elimination of noise 

caused by the GPS signal when a vehicle is stationary at trajectory points situated between the 

trip ends. This step is carried out using the Network Analyst Extension of the ArcGIS software 

which implements Dijkstra’s algorithm to find the shortest path. This algorithm was deemed 

suitable since it was able to correctly connect the first and last points of intersection trajectories. 

Figure 6-4 presents the raw GPS data in addition to two sample trip segments that were manually 

selected to be processed into a line using the shortest path algorithm and considered in the delay 

analysis.   

The fifth step consists of using the turning movement trip segment polyline to calculate the 

intersection movement length and speed.  

The following step, each turning movement trip segment is analyzed to determine the movement 

type (left turn, through movement, or right turn) based on the movement’s in and out directions. 

A movement type-direction correspondence dictionary is used at that step to determine the 

entering and exiting direction for each trip and associate it to the correct movement type. For 
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example, a vehicle entering an intersection from the south and exiting from the east is considered 

a right turn. At the seventh step, mean 15-min speeds are calculated per intersection movement.  

The last (eighth) step is an independent treatment of traffic counts carried out to extract and 

prepare traffic count data to be integrated to the mean 15-min speed table.  Therefore, a traffic 

count database is created containing detailed 15-min traffic counts for all intersections per 

turning movement. This database is integrated into the mean 15-min speed table based on the 

intersection ID and the turning movement to create the final 15-min traffic count-speed 

database. The final database is used to perform exploratory analysis to gain insight into the 

different movement types. 

Integration to Macroscopic Models 

To connect with large scale transport models, a method is then proposed to integrate the findings 

to the volume delay functions used in macroscopic simulation models. Assuming that through 

movement delays are already included in the link, or road segment, volume delay function, it is 

possible to express the turn penalty, seen as an additional delay, as a function of through 

movement travel time TT. This assumption is applicable since large scale transport models are 

calibrated based on floating vehicles that drive straight through main road corridors without 

turning at intersections. This results in link volume delay functions that integrate road segment 

and intersection delay for through movement only (TT in Figure 6-2). The following are the 

proposed left turn and right turn penalty functions based on the observed GPS trajectory data. 

(1)       𝑇𝐿𝑇 = 𝑇𝑇 + 𝑎 ∗ 𝑇𝑇 = 𝑇𝑇(1 + 𝑎)  

(2)      𝑇𝑅𝑇 = 𝑇𝑇 + 𝑏 ∗ 𝑇𝑇 = 𝑇𝑇(1 + 𝑏)  
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Where TLT and TRT, are the travel times for the left and right turns, respectively, and parameters 

a and b are the speed adjustment ratios for left and right turns respectively. These parameters 

are calculated using the trajectory length and travel time extracted from the GPS trajectory 

points. The parameters a and b are calculated as follows: 

(3)     𝑎 = 1 −
𝐿𝐿𝑇/𝑇𝐿𝑇

𝐿𝑇/𝑇𝑇
  

(4)     𝑏 = 1 −
𝐿𝑅𝑇/𝑇𝑅𝑇

𝐿𝑇/𝑇𝑇
  

For macroscopic models, the adjusted travel time for turning movements at intersections, or turn 

penalty functions can be considered as follows: 

(5)     𝑇𝑃𝐿𝑇 = 𝑎 ∗ 𝑇𝑇  

(6)     𝑇𝑃𝑅𝑇 = 𝑏 ∗ 𝑇𝑇  

Where TPLT and TPRT are the additional delay incurred for left turning vehicles and right turning 

vehicles, respectively, with respect to the through movement travel time. The use of these 

penalties results in the inclusion of all delays incurred at the intersection for all turn types.  

Case Study 

This study is based on data collected in Quebec City, Canada. Three sources of data were 

necessary. First, GPS trajectories data was recorded during the spring of 2014 in Quebec City, 

Canada. It was collected during 21 days by 2,000 voluntary users through the Mon Trajet 

smartphone app, made available by the Municipality. Each point is described by the following 

attributes: X and Y coordinates, trip ID, speed, and timestamp (Year-Month-Day-Hour-Minute-
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Second). The GPS data had gone through a preliminary round of preparation and map matching. 

The second data source, used at step number 8 of the methodology, is traffic counts collected 

and provided by the Municipality of Quebec City. Traffic counts were available for a one-day 

period per intersection for 15-min time intervals from 7:00 to 10:00 and from 15:00 to 18:00. 

These periods were selected by the municipality to cover peak traffic periods. Finally, the last 

data source was a geographic representation of the road network in the form of a shapefile which 

was obtained from OpenStreetMap (OpenStreetMap, 2023). Figure 6-5 presents the location of 

the four intersections selected to perform this study. These intersections were selected based on 

the road type and the control type. These variables are expected to have an influence on 

intersection movement delay and can be obtained with a reasonable amount of effort for large 

scale transport models. In this study, traffic light-controlled intersections were selected, and the 

road type was limited to arterial-arterial or arterial-collector intersections.  

A total of 1400 intersection movements were individually examined and 1136 were found to be 

adequate and selected for further analysis. 

6.5 Results 

Considering the four intersections that were analyzed in the case study, a total of 1136 trip 

segments (126 left turns, 153 right turns, 857 through movements) were extracted for the 

analysis period. The 15-min mean speed was the lowest for left turns at 14 km/h, followed by the 

right turns at 17 km/h, and through movement at 21 km/hr. Left turns are typically face conflicts 

with the opposite through traffic, requiring sharing of the green phase (with priority given to the 

opposite direction). In addition, left turns often conflict with pedestrian and cyclist users who 



6-121 
 

also have priority over motorists. To mitigate these conflicts, left turn movements are sometimes 

given a dedicated protected phase depending on traffic control design standards. Both situations 

contribute to the expectation that left turning movements have often slower travel times with 

respect to right. Regarding right turns, generally this movement conflicts with cyclists and 

pedestrians (who have priority), and occasionally conflicts with left turns from the opposite 

direction, but this is less frequent and less critical. Therefore, right turn delays are expected to 

fall between left turn delays and through movement delays. Through movement generally do not 

conflict with other movements (except for right turn on red); however, it’s delay depends on the 

signal timing design based on traffic flows for all movements. Thus, observed speeds for through 

movements are reasonable since they are expected to be the fastest.  

In parallel, the mean traffic count was the lowest for left turns at 33 vehicles per 15 minutes, 

followed by right turns at 36 vehicles per 15 minutes, and through movement at 77 vehicles per 

15 minutes. The final database was used to visualize the frequency distribution of mean 15-

minute speeds and 15- minute traffic counts for each intersection movement type, as shown in 

Figure 6-6.  

Further analysis was conducted to examine the relationship between speeds and observed traffic 

counts. No evident relationship was found between the two variables. Additionally, the mean 15-

minute speed is relatively volatile, explained by the fact that speed is affected by the 

intersection’s signal timing, operation mode, and geometric configuration rather than traffic 

flow. Additionally, traffic counts and GPS trajectories were not collected at the same moment, 

which is not ideal when comparing relatively fine resolution data. 
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For this case study, “a” and “b” for traffic light controlled arterial-arterial or arterial-collector 

intersections are calculated using equations 3 and 4 to be 0.33 and 0.19, respectively. In other 

words, a left turn movement is 33% slower than a through movement, considering movement 

definitions in Figure 6-2, and a right turn movement is 19% slower than a through movement. 

These parameters (a and b) represent an average behavior of the analysis period as estimated 

using all observations. However, with more data is available, it is possible to recalculate these 

parameters per peak period or hour of the day to increase the accuracy.  

6.6 Discussion 

The large-scale aspect of macroscopic transport models, sometimes referred to as strategic level 

models, can benefit from the availability of new sources of data for calibration. The proposed 

framework and methodology can process crowd-sensed GPS data to estimate turning movement 

delays and integrate them to macroscopic models. The proposed solution is a balance between 

the delay estimation methods proposed by the HCM or by Hoeschen et al. (2005) and Jiang and 

Zhu (2005), which are data-intensive when the model is very large, and the simplifications 

imposed to macroscopic models due to the lack of data and resources. Using GPS trajectory data, 

it was possible to develop a standardized method to extract speed information at the intersection 

turning movement level. Traditionally, delays were only calculated for operational purposes to 

design and optimize traffic signal phasing and timing, therefore, research mostly examining 

approach level delay, which is also used for level of service assessment, as can be seen in the 

work by Tišljarić et al. (2018).  
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Using the extracted results, it was possible to determine the frequency distribution of speeds and 

traffic counts for each of the turning movement types. These distributions can eventually serve 

to calibrate other stochastic transport models through distribution fitting and sampling variable 

delays based on the observed mean and variance values. However, for macroscopic transport 

models, aggregate speed results were used to propose a method to include GPS-based delays to 

turning movements. In fact, the main finding is that left turn movements for traffic signal-

controlled arterial-arterial or arterial-collector intersections have the lowest average speed 

compared to through movements and right turns. In addition, right turns were also found to have 

a lower average speed than through movements. This justifies the importance of including turn 

penalty functions that reflect this difference in observed speeds, which was the motivation of 

this work.  

The proposed method can be applied to a larger sample of intersections, a larger sample of GPS 

trajectories, and for a variety of road types for better coverage of the road network. The 

procedure is semi-automated for the moment and will require the automation of some the tasks 

to make it feasible to treat many trajectories rapidly. This will also allow for the inclusion of more 

GPS trajectories in the analysis allowing for better temporal coverage.  

No clear relationship was found between mean 15-min speeds and 15-min traffic counts. 

Although this is explained mainly by the intersection control type, which in this study was traffic 

signal control, the fact that only one day of traffic counts was available per intersection from a 

different year might contribute to the randomness observed in the speed-flow chart.   
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This study controlled for intersection control type and road type. Intersection delay can be 

influenced by additional variables such as the number of available lanes, the presence of 

dedicated turning lanes, the permission to perform a right turn on red, the number of conflicts, 

the type of traffic signal (fixed vs. actuated). Obtaining and maintaining these variables up to date 

at a regional level is challenging. However, if any of them is available, it could be interesting to 

include it to improve the classification of turning movements and improve the delay prediction. 

6.6.1 Limitations 

This work explores a new method to use GPS trajectory data to model turn movement delay per 

road type, movement type, and intersection control type for large-scale transport models. 

Although it makes use of the emerging availability of GPS trajectory, it is not without limitations. 

First, the applicability of the proposed method is to deterministic static transport models that 

aim to represent an average situation to be used for strategic planning and alternative 

comparison. Therefore, it is not possible to apply this method to dynamic traffic assignments, 

further analysis would be required to do so. Moreover, the case study examined in this work was 

limited by the available data. The GPS trajectory data sample, traffic counts availability, and 

unavailability of ground truth data were all limiting factors. To cover all types of intersection turn 

types, road types, and control types, a larger road network should be used in addition to a larger 

GPS trajectory data sample. Moreover, a larger GPS trajectory data temporal coverage will enable 

the modelling of turning movement delay per time of day to better reflect the variation of travel 

time during peak and off-peak periods. 
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6.7 Conclusion 

This work emphasizes the need to consider intersection movement delays in macroscopic 

transport models. It explores the availability of a new data source that can overcome data 

collection challenges, typical in macroscopic models. It also complements the work done on delay 

modelling for different transport modes, which focuses on the operational needs. It was found 

that crowd-sensed GPS data is suitable to estimate intersection movement delays at the 

intersection movement level. The case study examined traffic signal-controlled arterial-arterial 

and arterial-collector type intersections. Average speeds were found to be different for left turns, 

right turns, and through movements, justifying the importance of considering turn penalties. 

These speeds were then used to propose a method to integrate them back into macroscopic 

transport models to improve travel time estimation and consequently improve route choice.  

The proposed method can be further improved by increasing the automation of the procedure, 

allowing for the rapid treatment of many GPS trajectories. This, in turn, will increase the sample 

size of the observations and allow to estimate different turn penalties per peak period or per 

hour. Moreover, an extension of this work can examine different methods to address the length 

variable to ensure that no bias is introduced since different road segments can have different 

lengths, which can in turn influence the calculated turning speed. Furthermore, if more 

intersection variables are available, such as the number of lanes, the number of conflicts per 

movement type, the possibility to turn right on red, the presence of dedicated turning lanes, or 

other intersection control variables, they can be included to classify turning movement to 

improve turn penalty estimation accuracy. 
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Figure 6-1. Intersection Zone Example 
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Figure 6-2. Intersection Movement Definitions 
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Figure 6-3. Diagram of Database Creation Procedure 
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Figure 6-4. Sample GPS Trip Points Converted to Lines 
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Figure 6-5. Study Location - Selected Intersections 
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Figure 6-6. Frequency Distributions of Mean 15-min Speeds and 15-min Traffic Counts 
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This dissertation addresses the use crowd-sensed GPS data to build on current large scale model 

development practice by increasing network modelling accuracy while facilitating its’ 

updateability and reducing the required resources by proposing GPS data-driven methodologies 

to extract road networks attributes including: road segments’ number of lanes information and 

road intersection control type based on GPS trajectory data as well as to calibrate turn delay 

functions per road type and turn type. This discussion presents a summary of the main findings, 

limitations, and future work directions. 

7.1 Main findings 

The comprehensive literature review found that multiple research efforts were carried out to 

extract road network features from GPS trajectory data and highlighted the different families of 

techniques: clustering, intersection linking, and track alignment. This review also confirmed the 

relevance of using GPS trajectory data to extract road network related information and showed 

that research was mainly carried out in the geography and computer science fields, which aim to 

achieve different objectives. Although road network extraction accuracy was high (Y. Guo et al., 

2021), it was limited to extracting the road centerline and intersection location, therefore not 

adaptable transport network model development. Some of the past research efforts were not 

reproducible by reading the publication, therefore, one of the objectives of this research was to 

provide a detailed documentation of the methods to make it easier to implement and practice-

ready. This research builds on current tool capabilities and makes use of available data sources 

to extract additional network features and improve current network modelling quality.  

Figure 1-2 in Chapter 1 presented an overview of the contributions of this research to transport 

modelling and the relationship between the different developed methods, GPS trajectory data, 
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and current practice. Currently, transport modelling tools such as EMME and Aimsun use a road 

centerline shapefile to construct a road network in their proprietary format useable for traffic 

simulation. Since road centerline shapefiles usually have limited information regarding road 

directionality, connectivity, number of lanes, delay information, or intersection control type, the 

created road network using these tools, although in the correct format, require additional 

treatment to become more accurate and represent the actual road network. Therefore, this 

research proposes methods able to use crowd sensed GPS data to create a refined network 

model. First, EMME was used to create a simple road network for the study area. A procedure 

was then used to extract road directionality and intersection movements from GPS trajectory 

data. The road network was further refined by using the GPS trajectory data to predict the 

number of lanes for each road segment and the intersection control type. Based on the 

intersection control type, turning movement type and road type, a simple method was proposed 

to integrate turn penalties based on the GPS trajectory data. 

Road Direction and Intersection Movements 

To improve road network modelling, this research demonstrated the capability of crowd-sensed 

GPS trajectory data in improving a road network model generated by the EMME transport 

modelling tool using a road centerline geographic file. Using an existing road centerline 

representation provided a good road network skeleton and important priori information about 

road and intersection locations. Based on the frequency and direction of observed GPS 

trajectories, it was possible to infer road segment directions and turning movement permissions 

at intersections. The method also accounted for the inaccuracies in GPS data by performing a 

sensitivity analysis to determine a frequency-based threshold that allows best filter the noise. 
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For the study area and based on the available GPS trajectories sample, it was possible to extract 

road directionally at an accuracy of 95%. An additional sensitivity analysis also found that 

increasing the sample was also able to increase the extraction accuracy to 99% for this case study.   

For turning movements extraction, the proposed method was found to be 98% when GPS 

trajectory observations were available. However, for a given GPS trajectory data sample, turning 

movement extraction was found to be more sensitive to the sample size since there are usually 

three movements (through, right, and left) for each road segment. Moreover, through 

movements usually have more observations than right or left turning movements and higher 

capacity roads such as arterials have more GPS trajectory observations than local streets. 

Therefore, some movements are not observed in the data simply due to the sample size. This 

explains why considering all turning movements of the study area, the accuracy was reduced 

significantly to 68%. The sample size effect was validated by observing that 97% of the wrong 

predictions correspond to turning movements that are permitted within the ground truth dataset 

but for which no observation was extracted from the GPS dataset.  

Road Segment Number of Lanes 

Having obtained an accurate representation of the road network directionality and connectivity, 

another attribute essential to obtain for the network model was the number of lanes. This 

enables the estimation of road capacity and the modelling of travel time and route choice. Based 

on the lateral distribution of GPS trajectory points with respect to the road segment reference 

line and the number of GPS points per road segment, it was assumed that GPS trajectory points 

are concentrated around the centerline of each road lane. It was also assumed that GPS 

trajectory points’ inaccuracy is not biased and will be distributed randomly around the real 
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location of the GPS enabled device. One essential requirement regarding the input GPS trajectory 

data is that it had to be raw (not map-matched or snapped to a road centerline). It was possible 

to train a classification learner using a labelled dataset to predict the number of lanes at an 

accuracy of 91% using decision trees classification. 

Road Intersection Control Type 

Knowledge of road intersection control types is another essential component of transport 

models. It can be used to better classify road segments since intersection control type has a 

significant impact on traffic dynamics. The proposed method was successful in predicting 

intersection control type at 96% accuracy. The selected predictors also demonstrated how 

intersection approach level speed characteristics and number of observed trips can be used to 

predict intersection control type. The application of this method is targeted at large scale 

transport models where intersection control type information is rarely available and requires 

important collection efforts to obtain manually. Moreover, intersection control type knowledge 

is essential prior to modelling intersection turning movement delay since control type has a 

significant on speeds.  

Road Intersection Turn Delay 

Having built an accurate road network containing the correct road segment directionality and 

connectivity, number of lanes, and intersection control type, it was possible to build on that by 

proposing a method to model turn delay functions per road type, turn type, and intersection 

control type. The case study presented was for arterial-arterial or arterial-collector road 

intersections that controlled by traffic lights. Intersection movements were defined in a 

standardized way to ensure that delay of different movement types for a given approach can be 
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compared together to find the relative difference in their speeds. This enables the findings to be 

easily treated and integrated back into large scale macroscopic models. This work assumes that 

macroscopic models are generally calibrated using floating vehicle data that drive through 

intersections in a straight movement (through) to cover specific corridors. This signifies that the 

volume delay functions implicitly represent queuing for the through movement. This logic 

justified the use of crowd-sensed GPS data to model the difference in congestion that can be 

observed between through movement and turning movements (left or right) since crowd-sensed 

data has a better coverage of all the movements that are made at intersections. 

It was demonstrated that left turns, right turns and through movements have different observed 

speed profiles which justifies the importance of making use of the large spatiotemporal coverage 

of crowd-sensed GPS trajectory data to make travel time estimation more accurate. Traffic 

speeds were averaged over 15-minute periods and traffic counts were collected for 15-minute 

periods. It was found that 15-min mean speed was the lowest for left turns at 14 km/h, followed 

by the right turns at 17km/h, and through movement at 21 km/hr. This can be explained by 

multiple factors such as traffic light phasing and timing, traffic light operation mode (fixed vs. 

actuated) intersection movement radius, permission to turn right on red. 

In parallel, the mean 15-min traffic count was the lowest for left turns at 33 veh. /15-min, 

followed by right turns at 36 veh. /15-min, and through movement at 77 veh. /15-min. This 

information guides the traffic light phasing and timing design and demonstrates that through 

movement requires, on average, more green time, thus having an influence on observed speeds 

as presented above.  
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Given that in practice, travel time calibration is performed mainly for through movements 

(TRANS, 2014), a method was proposed to efficiently integrate the findings into large scale 

models by introducing speed adjustment factors, per road type, turn type and intersection 

control type,  that relate turning movement travel time to the through movement travel time. 

This integration increases the accuracy of travel time calibration, therefore resulting in more 

accurate route choice and traffic assignment results. 

Data Privacy 

Given that GPS trajectory data, in its raw form, can be sensitive information if not anonymized 

and handled adequately, the methods proposed by this research were verified to ensure that it 

is impossible to identify any individual using the GPS trajectory dataset. 

In fact, the GPS trajectory dataset did not contain any personal information and was never 

merged to any other data source that can identify personal information. Moreover, the proposed 

methods only process the GPS trajectories on road segments and intersections and extract 

variables such as speed and direction, that cannot be used to identify any individual. Trips were 

never examined in their entirety and origins and destinations were not examined at the individual 

trip level nor at the aggregate level, thus making it impossible to identify any individual. 

It should be noted that the proposed methods can be applied using any crowd sensed GPS 

trajectory data. Depending on the GPS trajectory data source, it is possible to provide additional 

privacy protection by trimming the first and last 100 meters of each trajectory to ensure that no 

individual be identified by merging additional data sources.  
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7.2 Limitations 

The main limitation that was faced while extracting network-wide road direction and turning 

movement rules was the limited sample size per intersection. This limitation was greater for right 

and left turns that are observed less frequently in the GPS trajectory data. Moreover, 

intersections movements of lower traffic streets were also less observed due to the sample size. 

Increasing the sample size by collecting the data over a longer period or accessing a larger 

number of mobile devices will result in higher accuracy, especially for turning movement 

modelling. The increase in sample size will also allow modelling the permitted intersection 

movements by time of day and day of week. This is important in regions where turning movement 

prohibition policies are scheduled for specific periods to increase traffic fluidity or improve road 

safety by reducing conflicts during peak traffic periods. 

The proposed method to extract the number of lanes was limited by the quality and the quantity 

of the GPS trajectory. In terms of quality, around 50% of the data appeared to be snapped to a 

road centerline file. This reduced the GPS trajectory points’ distribution quality, which in turn 

reduces the capacity of the algorithm to distinguish between road segments of different number 

of lanes. Moreover, the sample size was insufficient in some cases, mostly for local streets, since 

there were not enough points to obtain a stable distribution of the points with respect to the 

reference line. Since local streets only have one lane most of the time, this algorithm was still 

able to classify the one lane streets based on the sample size.  

Given that modelling road intersection control type is based mainly on vehicular speed 

characteristics, increasing the GPS trajectory data sample size might enable the analysis of speed 
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profiles for specific time periods. This can provide additional insight by reducing heterogeneity in 

the observations and reducing the variability in speed characteristics that is usually observed 

throughout the day based on the traffic flows and reflected in traffic light timings. Additionally, 

targeting the analysis at specific times of the day will filter movements that are prohibited during 

specific periods to increase traffic fluidity or improve road safety by reducing the number of 

conflicts. 

Regarding turn movement delay modelling, the main limitation was the specification, at a given 

road intersection, of the turning movement start point and end point for each trip. The 

uncertainty inherent to GPS trajectory data points in terms of sampling rate and errors in some 

observed trips made the full automation of the labelling process impossible and had to be done 

manually. The current study is based on 1136 turning movements that were manually labelled to 

demonstrate the applicability of the method.  

7.3 Future Work Directions 

The proposed method for turn delay modelling can be improved by developing an automated 

method to label the movement start and end points within the GPS trajectory data following the 

provided definition of turning movements. This is necessary for turn delay modelling and must 

be done for each trip segment passing through each intersection. This will make it feasible to 

analyze all intersections’ movements more efficiently and take advantage of the large coverage 

of crowd-sensed data. 

Moreover, a larger sample size with sufficient observations at low traffic streets and turning 

movements can be used to improve the model results. In fact, the sample size depends on the 
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road network feature that is being modelled or extracted. For example, in some urban areas, the 

road network segments have a fixed number of lanes available for general traffic and do not vary 

by time of day or day of the week. In this case, the sample period is not limited to specific times 

of the day and is usually dictated by the number of trip observations on local streets since they 

were observed to be lower. If the number of available lanes varies based on a temporal criterion, 

the sample should be large enough to be representative of each of the road network states. A 

good rule of thumb is having at least 30 GPS trip trajectory observation per road segment per 

analysis period. A future work can determine minimum sample size to be recommended per road 

network feature depending on the analysis period and the road type. In the presence of more 

data sources and larger data samples, the analysis becomes more complex and additional 

machine learning techniques such as ensemble learning can be explored to improve modelling 

accuracy. 

Modelling intersection control type can be further developed by using the model predictions to 

model generic traffic light phasing and timing that can be used for mesoscopic level models, 

which are large scale models that require more detailed input information such as traffic light 

programming information. 

Moreover, GPS trajectory data can be used to estimate road segment (or link) capacity. The idea 

would be to develop a method that scales the GPS trajectory sample to represent the entire 

population and relate that information to the travel time (or speed). Conditions can then be set 

to identify the link capacity by determining the maximum traffic flow (obtained from the GPS 

estimated population) just prior to congestion.  
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Since posted speeds are not necessarily free flow speeds as drivers tend to driver at higher speeds 

than the limit, another utilization of crowd-sensed GPS data would be to estimate free flow 

speeds that used in macroscopic model’s volume-delay functions. This is relatively to simple to 

develop and can be done by estimating travel speeds during off-peak times of day. A relationship 

can also be established between each posted speed and the observed free flow speeds to make 

the information more generalizable. 

Although it was not explored by this research a large sample of crowd-sensed GPS data can be 

used to extract origin-destination demand travel demand information. This can be done and 

compared to origin-destination information obtained from traditional household origin-

destination surveys to assess if there exists any bias or limitation to this new data source.  

Although the developed methods might require some additional refinement and adjustments to 

make them more generalizable, the presence of a plethora of trajectory data creates a potential 

for their commercialization through transportation planning and modelling software such as 

EMME and Aimsun.  

It is important to keep in mind the privacy protection concern and take the necessary measures 

to ensure that no individual can be identified throughout the process.  
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This dissertation presented the use crowd-sensed GPS data to build on current large scale model 

development practice by increasing network modelling accuracy while facilitating its’ 

updateability and reducing the required resources. 

Using observed GPS trajectories to extract road network topology and connectivity features was 

achieved at a high accuracy (95%). The road segment number of lanes was also extracted at a 

high accuracy (91%) and can be further improved by using better quality GPS trajectory data. 

Having extracted the main road network features, the third objective was also achieved by 

predicting intersection control types with a high accuracy (96%). This information was necessary 

to classify intersection movements per road type, intersection control type and turn type. A 

method to calibrate turn penalty functions using GPS trajectory data was also presented while 

demonstrating the added value of using this large coverage data source in improving large scale 

transport model calibration. 

With knowledge in spatial and data analysis, and access to GPS trajectory data, it is possible to 

reproduce the proposed methods for further research or for implementation in practice based 

on the information provided in the manuscripts. The techniques are transferable to new GPS 

trajectory samples and new study areas. However, it is important to re-train machine learning 

models based on the new data to obtain good results. For example, sample size related variables 

will vary depending on the GPS trajectory data sample.  

The proposed methods demonstrate the utility of this new data source in improving road 

network modelling. It reduces the resources required to perform network modelling and 

improves quality of the model by serving as a large coverage floating vehicle travel time survey. 
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This information will help in calibrating more precise transport models and in updating the road 

network model more frequently and more efficiently.  

In addition to achieving high accuracy, these methods build on current modeling tools capabilities 

by refining its output through using a new data source, spatial analysis, and machine learning. 

These methods are effective since GPS trajectory data is currently being collected by multiple 

location-based service providers at a relatively low cost. This reduces the costs associated with 

collecting satellite imagery data or street level imagery data. Moreover, the proposed methods 

achieved all the objectives while protecting the privacy of the individuals who were making the 

trips.  
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