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A B S T R A C T

Recent research on Bus Rapid Transit (BRT) systems has mostly focused on ridership forecasting and scheduled 
travel time gains, with little empirical evidence on potential operational improvements. This study examines the 
short-term impacts of implementing a new BRT corridor in Montreal, Canada, on key bus performance indicators: 
running time, running time deviation, and headway deviation. Using Automatic Vehicle Location (AVL) and 
Automated Passenger Count (APC) data from 2022 to 2023, we compare the performance of the BRT to a parallel 
local bus route operating along the same corridor, before and after the BRT implementation. Our findings 
indicate that the BRT significantly reduced trip durations (about four minutes on average) primarily due to 
infrastructure features such as dedicated lanes and all-door boarding policy. The local route experienced modest 
running time improvements post-BRT, suggesting potential corridor-wide benefits. However, run time deviation 
was significantly higher for the BRT, particularly during peak periods while headway deviation worsened along 
the corridor compared to pre-BRT conditions. These findings highlight the importance of integrating infra
structure investments with dynamic operational strategies such as real-time dispatching and headway control. It 
emphasizes the need for schedule calibration following implementation to ensure that planned service aligns 
with actual performance. These findings offer practical insights for transit agencies planning or managing BRT 
systems.

1. Introduction

Bus Rapid Transit (BRT) systems have emerged as a high-quality, 
cost-effective alternative to rail-based transit options, particularly in 
Global South countries (Wirasinghe et al., 2013). By combining features 
such as dedicated rights-of-way, limited stop service, and all-door 
boarding policy, BRT systems can offer travel speeds and capacities 
(Levinson et al., 2002; Venter et al., 2017) similar to light rail or metro 
systems while requiring significant lower capital investment (Currie and 
Delbosc, 2014; Deng and Nelson, 2011). As a result, BRT has gained 
popularity globally, with more than 190 cities, 23 of them in North 
America, implementing BRT corridors to improve urban mobility (BRT 
Data, 2023).

Research on BRT implementation has typically emphasized out
comes such as ridership forecasting (Baker and Linovski, 2022; 

Ingvardson and Nielsen, 2017; Stewart et al., 2017; Umlauf et al., 2016), 
modal shift (Currie, 2006; Ingvardson and Nielsen, 2017), or scheduled 
travel time gains (Pereira, 2019; Singh et al., 2022). However, fewer 
studies have focused on the operational performance of BRT systems 
once they are in service. Specifically, empirical analysis of how BRT 
affects actual running times, schedule deviation, and headway regular
ity remain limited, despite these metrics being central for understanding 
service reliability, which influence user experiences (Cao et al., 2015) 
and ridership retention and growth (Allen et al., 2018; Chou & Kim, 
2009).

To date, some efforts have been made to assess these dimensions, but 
they often rely on less granular data sources. Schramm et al. (2010) used 
schedules to evaluate the travel time changes across 19 BRT systems. 
While Andrew et al. (2022) used limited field observation data to 
measure travel time performance between BRTs, conventional buses, 
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and private automobiles along a 10.2 kilometer arterial segment in Dar 
es Salaam. While these studies offer valuable insights, the use of Auto
matic Vehicle Location (AVL) and Automatic Passenger Counter (APC) 
systems can support providing more robust before-and-after evaluations 
of new BRT systems, as they enable precise, detailed monitoring of 
transit performance.

Most existing studies adopt cross-sectional designs, evaluating per
formance post-implementation without a true pre-BRT baseline. 
Consequently, the extent to which BRT implementation improves, or 
undermines, operational performance relative to previous service re
mains unclear. A further complication is that BRT services often partially 
replace or run in parallel to existing bus routes. In such cases, opera
tional changes may extend beyond the BRT route itself, producing 
spillover effects that impact local routes and network-wide service 
quality similar to what was found with the implementation of new ex
press bus services (Diab & El-Geneidy, 2012; El-Geneidy & 
Surprenant-Legault, 2010; Surprenant-Legault & El-Geneidy, 2011).

This paper addresses these gaps by evaluating the operational im
pacts of the Pie-IX BRT corridor in Montreal, Canada, implemented in 
November 2022. Leveraging AVL/APC data from before and after the 
corridor’s inauguration, we quantify the impact of introducing the BRT 
route on operational performance (running time, schedule deviation, 
and headway deviation) along and parallel to the corridor, providing 
new empirical insights into how BRT systems alter local transit opera
tions. In doing so, this study contributes to a more comprehensive un
derstanding of BRT effectiveness and supports data-driven transit 
planning and scheduling practices.

2. Literature review

2.1. Running time

Running time refers to the time it takes for a bus to travel between 
two points on a route. It is a foundational performance metric in transit 
operations, directly influencing in-vehicle travel time (El-Geneidy et al., 
2006). Running time is shaped by a combination of internal operational 
factors, such as passenger activity, onboard passenger load, distance 
travelled, delay at the beginning of the trip, number of stops made, and 
vehicle type, as well as external conditions including traffic congestion, 
weather, and time of day (Abkowitz and Engelstein, 1983; Levinson, 
1983; Strathman et al., 2000).

Transit agencies have implemented several strategies to reduce 
running time, including dedicated bus lanes, limited-stop services, and 
transit signal priority (TSP) (Diab and El-Geneidy, 2012), all of which 
are core features of Bus Rapid Transit (BRT) systems. Other strategies, 
such as operating articulated buses to accommodate higher demand, can 
have mixed effects on running time (El-Geneidy and Vijayakumar, 
2011). While articulated buses require more time for acceleration and 
deceleration due to their weight, employing all-door boarding can lead 
to substantial time savings due to the presence of three doors 
(El-Geneidy et al., 2017).

Over time, the modelling of bus running times has evolved. Early 
studies relied on manually collected data to estimate trip duration and 
factors influencing variability (Levinson, 1983). More recent research 
has leveraged archived data from AVL and APC systems, which offer 
more granular and continuous observations of bus movements. These 
technologies enable more robust modelling of operational performance 
under real-world conditions (Kimpel, 2001; Kimpel et al., 2005; 
Tétreault and El-Geneidy, 2010). For example, Diab and El-Geneidy 
(2012) demonstrated that a combination of service improvements, like 
all-door boarding and TSP, significantly reduced running times along 
major bus routes in Montreal. Kathuria et al. (2020) expanded this 
research by analyzing travel time variability using GPS data from 
Ahmedabad’s BRT network. Their study highlighted the role of system 
design and intersection density in shaping travel time variability pat
terns while reinforcing the value of real-time data for evaluating BRT 

performance. However, their focus was limited to the BRT corridor itself 
and does not incorporate comparisons to parallel local bus services or 
changes over time.

2.2. Schedule deviation

Schedule deviation, or running time deviation, refers to the differ
ence between scheduled and actual travel times (Cats, 2019). High 
schedule deviations can result in increased passenger waiting times and 
missed transfers. Continued negative experiences with transit can lead 
to decreased trust in the transit system, influencing ridership (Calvo & 
Ferrer, 2018; Cao et al., 2015; Saxena et al., 2024; Singh and Kathuria, 
2023; Wan et al., 2016). The determinants of bus running time deviation 
are well established in the literature matching the determinants of 
running time (Cats, 2019; El-Geneidy et al., 2011). BRT systems are 
often implemented with the goal of reducing such variability through 
features like dedicated lanes and reduced number of stops. However, 
while these elements are assumed to enhance schedule adherence, few 
empirical studies rigorously evaluate whether the implementation of a 
BRT corridor actually reduces schedule deviation using real-time per
formance data.

Two main approaches are commonly used to measure deviation 
using AVL data. The first method assesses absolute deviation between 
actual and scheduled running times (Cats, 2019), interpreted in seconds 
or minutes. The second, more robust method expresses the deviation as a 
ratio of actual to scheduled run time, accounting for variation in 
scheduled trip lengths (El-Geneidy et al., 2011). The latter is particularly 
effective when comparing routes or trips with different distances or time 
allocations. Despite the availability of these methods and data sources, 
schedule deviation remains an underexplored dimension in BRT per
formance evaluations, particularly in studies adopting a longitudinal or 
comparative framework.

2.3. Headway deviation

Headway deviation refers to the inconsistency between scheduled 
and actual intervals (headways) between consecutive buses on the same 
route (Vuchic, 2017). It is a measured as the ratio between the actual 
headway, calculated with AVL data, and the scheduled headway 
(El-Geneidy et al., 2011; Tirachini et al., 2022). Deviations in headways 
can lead to inefficiencies in bus operation, such as bus bunching (Chen 
et al., 2022; Daganzo, 2009). Bus bunching is well studied in the public 
transit literature, leading to uneven passenger load and to reduced route 
productivity (Tirachini et al., 2022). This practice has a direct impact on 
waiting time (Durán-Hormazábal and Tirachini, 2016) affecting seat 
availability (Babaei et al., 2014) and rider satisfaction. Additionally, bus 
bunching has been shown to impact running times (Verbich et al., 2016).

A wide range of operational and environmental factors influence 
headway deviation being similar to the determinants of running time 
and running time deviation (Strathman et al., 2003; Tirachini et al., 
2022). While most BRT systems are designed to minimize these dis
ruptions, through measures like exclusive lanes, off-board fare collec
tion, and dedicated stations with at level boarding, achieving consistent 
headway in practice can remain a challenge, especially in mixed traffic 
segments. Despite the operational importance of headway adherence, 
few empirical studies assess changes in headway deviation resulting 
from BRT implementation, particularly using comparative or longitu
dinal studies. Moreover, evaluations have typically overlooked whether 
BRT corridors have improved headway regularity relative to services 
they replaced, leaving unanswered questions about the net benefits of 
the investment in terms of reliability.

A substantial body of research has explored strategies to mitigate 
headway deviation, generally through real-time control mechanisms 
tested in both simulation and field settings. Early work emphasized 
threshold-based holding, showing that simple headway control rules 
(whether defined by the preceding bus alone or by both preceding and 
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following buses using real-time data) can stabilize service when applied 
at strategic locations, particularly high-demand stops near the route 
midpoint (Fu & Yang, 2002). Focused on dedicated corridors, such as 
BRT infrastructure, more advanced approaches introduced deterministic 
and predictive holding strategies (Muñoz et al., 2013), which differ in 
how they treat passenger demand and travel-time variability. Deter
ministic control assumes relatively stable conditions and is particularly 
effective on crowded routes, as it minimizes passenger wait times and 
prevents downstream overloads. Predictive control, by contrast, ac
counts for random variations and is better suited to less crowded routes, 
as it prioritizes keeping headways even and avoiding bunching. Robust 
model predictive control (MPC) approaches build on these methods by 
explicitly accounting for operational uncertainties, such as fluctuating 
passenger demand and variable running times, through continuous 
real-time feedback (Ma et al., 2021).

Recent studies have introduced probabilistic dispatching to guide 
holding decisions under uncertainty (Berrebi et al., 2015). Other 
research has highlighted complementary tactics, including conditional 
signal priority (i.e., requesting intersection priority only when it im
proves headway or schedule stability) (Anderson & Daganzo, 2020), 
short-turning as a more effective alternative to conventional holding on 
congested routes (Tian et al., 2022), and integrated tactic libraries that 
combine holding, skip-stops, and speed adjustments to improve reli
ability and transfers (Nesheli & Ceder, 2017). Collectively, these studies 
underscore that while no single strategy fully resolves headway de
viations, data-driven and context-specific interventions can significantly 
improve reliability. Yet, much of this work remains theoretical or 
simulation-based, and relatively little is known about how these mech
anisms translate into real-world outcomes when new infrastructure such 
as BRT corridors are introduced.

While significant research has documented the theoretical advan
tages of BRTs, most studies rely on scheduled data, simulated scenarios, 
or post-implementation snapshots. Few have leveraged detailed AVL 
and APC data to examine how key operational metrics, such as running 
time, schedule deviation, and headway deviation, change with the 
introduction of a BRT corridor. Even fewer have adopted before-and- 
after designs or compared BRT services to parallel local routes, despite 
the implications for broader network efficiency. These gaps limit our 
understanding of how BRT investments perform under real-world con
ditions and how they affect the overall reliability of transit operations 
along the corridor where they operate. This research addresses these 
limitations by studying the introduction of the Pie-IX BRT in Montreal, 
Canada, contributing new empirical evidence to support performance- 
based transit planning.

3. Case Study

The Pie-IX BRT corridor runs through the east side of Montreal, 
Canada. The $523 M CAD project spans over 13 km along Pie-IX 
boulevard with fourteen operational stations. The corridor runs in the 
north-south direction, connecting residential areas to major east-west 
commuter routes on the island of Montreal. Service along the corridor 
is currently provided by two routes: the recently implemented BRT 
service (route 439) and the local route 139, which operated as the pri
mary service along Pie-IX prior to the BRT’s inauguration in November 
2022. While the 439 operates primarily in a dedicated bus-only lane in 

the middle of the Pie-IX boulevard with enhanced infrastructure, such as 
dedicated stations, and transit signal priority (TSP), route 139 continues 
to run in mixed traffic along the same boulevard and is not permitted to 
enter the BRT’s exclusive lanes. Moreover, the BRT route serves every 
station along the corridor, while the local route operates on a request- 
stop basis. Fig. 1 provides an overview of the infrastructure configura
tion for both routes along the Pie-IX boulevard.

Before the BRT’s opening, route 139 served approximately 29,500 
riders per day in 2019. However, this figure dropped significantly since 
the COVID-19 pandemic, with ridership falling to around 11,500 riders 
per day in 2022 before the BRT started operations. Following the 
introduction of the BRT route, early 2023 data indicate that route 439 
was carrying approximately 30,000 passengers daily, while the local 
route 139 retained only about 3000 passengers. This shift in ridership 
illustrates not only the operational significance of the BRT route but also 
its potential to reshape transit usage along the corridor with around 
3500 new daily users at a time when the transit system in Montreal did 
not fully recover from the COVID-19 pandemic.

Schedules for both route 139 and the BRT were stable throughout the 
study period, with only minor month-to-month variation across periods 
of the day. For instance, in the before period, Route 139 showed a me
dian AM peak frequency of 13 min, ranging from 10 to 15 min over the 
year. After the implementation of the corridor, schedules remained 
consistent, with the BRT operating at 10-minute intervals and route 139 
at 30-minute intervals in the AM peak. The BRT operates a range of trip 
patterns, with variations in starting and ending points depending on the 
time of the day. The BRT runs in mixed traffic at both the southern and 
northern ends of some trip patterns. While the northern section is not 
planned to receive a dedicated corridor, the corridor is being extended 
further south. To ensure consistency in analysis, this study focuses 
exclusively on the segment shared across all route patterns. This com
mon section spans approximately ten kilometers from Pierre du Cou
bertin station in the southern portion of the route to Amos station in the 
northern portion, as illustrated in Fig. 2. It is important to note that, 
immediately following the corridor’s inauguration, a short section of the 
BRT alignment was rerouted due to ongoing construction at Jean-Talon 
station, which will later connect through a tunnel to a future extension 
of the blue metro line in the region.

The Pie-IX corridor offers a unique setting to evaluate the operational 
outcomes of BRT implementation. It enables comparison between bus 
rapid service and a legacy local route operating in mixed traffic. The 
configuration allows for a before-and-after evaluation using AVL/APC 
data, providing insight into how the BRT infrastructure affects running 
time, schedule deviation, and headway deviation relative to both past 
conditions and current local service.

4. Data source

The data used in this study was obtained from Société de Transport 
de Montréal (STM) through a formal access-to-information request 
submitted in 2023. The dataset consists of operational records drawn 
from STM’s AVL/APC systems. The AVL systems records bus locations at 
frequent intervals, which are processed into stop-level arrival and de
parture timestamps. The APC systems automatically log the number of 
passengers boarding and alighting at each stop using infrared sensors at 
vehicle doors. The use of AVL/APC data is well established in the transit 

Fig. 1. Configuration of the Pie-IX boulevard (Routes 139 and 439).
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literature as a robust method for understanding the impacts of opera
tional improvements (Dueker et al., 2004; Strathman et al., 2000; 
Tirachini et al., 2017). Combining these technologies yields key opera
tional measures, including actual running times and headways between 
consecutive buses.

Since 2020, STM has equipped their entire bus fleet with AVL/APC 
technology as part of the implementation of their real-time “next 
arrival” passenger information system. For this study, we obtained 

detailed stop-level data for the local route 139 and the newly imple
mented BRT route 439. Specifically, we accessed archived data from 
January 2022 to March 2023 for route 139 (n = 1,990,578 stops) and 
from November 2022 to March 2023 for route 439 (n = 358,296 stops). 
This time window captures operational patterns both before and after 
the BRT implementation, allowing for a comparative assessment be
tween both services as well as potential spillover effects. The dataset 
meets industry standards for AVL/APC quality. APC data were valid for 

Fig. 2. Studied segment of the BRT (route 439) and route 139.

Fig. 3. Timeline of data collection.
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96 % of trips and stop-pattern coverage was 99 % across the dataset. 
Fig. 3 presents a visual summary of the data collection period in relation 
to the inauguration of the Pie-IX BRT corridor. A detailed description of 
the variables and related descriptive statistics are provided in the 
following sections.

5. Methods

To assess the operational impacts of the Pie-IX BRT corridor, we 
estimate three multivariate linear regression models, each correspond
ing to a distinct performance outcome: running time, running time de
viation, and headway deviation. These metrics were chosen as they 
reflect core operational dimensions, such as travel time and reliability 
(TRB, 2003), expected to be sensitive to the implementation of a BRT 
corridor while directly observable from AVL/APC data. The derived 
models allow us to quantify the effect of the BRT implementation on 
different dimensions of service reliability while controlling for opera
tional, temporal, and environmental conditions. The models were esti
mated using generalized linear model (GLM) with a Gaussian 
distribution and identity link function, which is equivalent to ordinary 
least squares (OLS) regression. The use of OLS regression is appropriate 
for continuous dependent variables and facilitates clear interpretation of 
coefficients in the context of transit operations.

Although the dataset was originally structured at the stop level, all 
models are estimated at the trip level to align with the study’s objectives 
and to ensure consistency across performance metrics. Trip-level in
dicators, such as total run time, cumulative passenger activity, and 
headway deviations were computed accordingly for the studied 
segment. Table 1 summarizes the dependent and independent variables 
used across the three models.

Running time is calculated based on the time the bus leaves the first 
stop along the segment till the bus arrives at the last stop along the same 
segment. The BRT and After BRT variables allows us to isolate the impact 
of the BRT corridor from general temporal trends. Interaction terms 
between these two indicators are included to capture the net effect of 
BRT implementation relative to pre-existing local service. Temporal 
controls account for peak and off-peak periods, while weather-related 

variables help isolate effects from environmental disruptions. Passen
ger activity is included with a quadratic term to reflect non-linear effects 
on dwell time and overall trip performance.

6. Results and discussions

6.1. Descriptive statistics

Table 2 reports descriptive statistics for key operational indicators 
across three service configurations: route 139 before the BRT imple
mentation, route 139 after implementation, and route 439 (BRT).

Average running time decreased notably across configurations. For 
route 139, mean trip duration declined from 2452 s (40 min) before the 
BRT implementation to 2321 s (38 min) after implementation. Route 
439 (BRT) exhibited the shortest mean run time at 1843 s (30 min), 
reflecting the impact of its operational design, such as dedicated lanes, 
transit signal priority, and limited stops. Welch two sample T-tests 
confirm that all differences are statistically significant. The reduction 
from route 139 before to after BRT implementation was highly signifi
cant (t = -30.03, p < 0.001), with a mean difference of approximately 
131 s. The difference between route 139 before and route 439 was even 
more pronounced (t = 281.47, p < 0.001), yielding a time savings of 
over 600 s (10 min), demonstrating the operational efficiency of the 
BRT.

Changes in running time deviation followed a similar trend. The 
average running time deviation for route 139 improved from 9.1 to 4.5 
percent after the BRT, a statistically significant reduction (t = 28.22, 
p < 0.001), indicating enhanced schedule adherence. However, the BRT 
exhibited a higher average deviation of 19.9 %, suggesting greater 
inconsistency during early implementation. This difference was statis
tically significant when compared to both route 139 before (t = -105.3, 
p < 0.001) and after the BRT (t = -87.05, p < 0.001). These results 
indicate that while the BRT delivered travel time savings, initial stability 
and adherence to scheduled run times remained a challenge.

In terms of headway deviation, route 139 worsened slightly from 
0.957 before BRT to 0.991 after implementation, a statistically signifi
cant deterioration (t = –10.97, p < 0.001). Comparing across services, 
the BRT exhibited no improvement over the pre-BRT baseline. Headway 
deviation averaged 0.993 for route 439 versus 0.957 for route 139 
before implementation, a significant difference (t = –6.35, p < 0.001). 
In contrast, route 439 and route 139 after implementation were statis
tically indistinguishable (0.993 vs. 0.991; t = –0.12, p = 0.91). These 
findings suggest that the BRT did not deliver measurable gains in service 
regularity relative to the pre-BRT local service benchmark.

Other variables show meaningful contrasts. For instance, passenger 
activity appears similar across groups but with greater variance for the 

Table 1 
Variable description.

Variable Description

Run Time Trip duration in seconds [Dependent]
Run Time Deviation Ratio between actual and scheduled run time [Dependent]
Headway Deviation Ratio between actual and scheduled headways at the end of 

the route [Dependent]
BRT Equal one if bus route is 439, zero otherwise
After BRT Equal one if date after the opening of the BRT, zero 

otherwise
South Equal one if southbound, zero otherwise
Early AM Equal one if stop time is between 3:00–6:30 am, zero 

otherwise
Am Peak Equal one if stop time is between 6:30–9:30 am, zero 

otherwise
Midday Equal one if stop time is between 9:30 am to 3:30 pm, zero 

otherwise
PM Peak Equal one if stop time is between 3:30–6:30 pm, zero 

otherwise
Evening and night Equal one if stop time is between 6:30 pm to 3:00 am, zero 

otherwise
Weekday Equal one if the trip is in a business day, zero otherwise
Delay at start The delay at the start of the route in seconds (leave – 

scheduled time)
Passenger activity The sum of boardings and alighting per trip
(Passenger activity) ² The sum of the square of boardings plus alighting per trip
Mean temperature 

(◦C)
Mean temperature on the day of the trip

Rain (mm) The amount of rain (mm) on the day of the trip
Snow on the ground 

(cm)
Snow on the ground (cm) on the day of the trip

Table 2 
Descriptive statistics.

Variable Route 139 – Local Bus Service Route 439 (BRT)

Before BRT After BRT

Running Time 2452.3 (320.1) 2321.2 (318.9) 1843.1 (233.2)
Running Time Deviation 1.0 (0.4) 1.0 (0.2) 1.0 (0.8)
Headway Deviation 1.0 (0.5) 1.0 (0.2) 1.0 (1.0)
Early AM 0.1 (0.3) 0.1 (0.3) 0.0 (0.2)
Am Peak 0.2 (0.4) 0.2 (0.4) 0.2 (0.4)
Midday 0.4 (0.5) 0.3 (0.5) 0.4 (0.5)
PM Peak 0.2 (0.4) 0.2 (0.4) 0.2 (0.4)
Evening and night 0.2 (0.4) 0.3 (0.4) 0.2 (0.4)
Weekday 0.7 (0.4) 0.7 (0.5) 0.8 (0.4)
Number of stops 35.4 (1.6) 35.4 (1.6) 15.9 (0.7)
Delay at start 33.6 (86.2) 24.9 (97.1) 105.2 (146.3)
Passenger activity 113.3 (60.8) 103.4 (161.9) 107.2 (69.8)
Mean temperature (C) 7.9 (12.6) − 2.6 (5.7) − 2.3 (5.6)
Rain (mm) 2.9 (7.1) 2.8 (5.9) 2.4 (5.2)
Snow on the ground (cm) 4.2 (6.9) 13.5 (12.4) 13.1 (12.8)
Trips (n) 48,212 6,016 21,595
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BRT. Environmental differences, such as higher snowfall and lower 
temperatures during the post-BRT period are notable and controlled for 
in the regression analysis.

6.2. Regression results

We estimated OLS models for running time, running time deviation, 
and headway deviation. OLS assumptions were assessed for normality of 
residuals (QQ plots), nonlinearity (Ramsey RESET test), hetero
skedasticity (Breusch–Pagan test), multicollinearity (adjusted VIF), 
autocorrelation of residuals (Durbin–Watson test), and influential 
measures (Cook’s distance, leverage values, and student residuals). All 
adjusted VIF values were below 5, indicating no problematic multi
collinearity among predictors. Although we considered including the 
observed number of stops in the regression analysis, this variable was 
almost perfectly correlated with the route indicator (r = –0.99), creating 
severe multicollinearity. We therefore excluded it from the models. A 
small share of observations was highly influential representing mostly 
non-typical disruption trips, characterized by substantially higher de
lays, heavier passenger activity, snowfall conditions, and shorter 
scheduled headways. We removed these observations (running time: 
3.84 %, running time deviation: 4.65 %, headway deviation: 4.60 %) 
and refitted the models on the remaining sample. This significantly 
improved residual normality and reduced leverage without substantially 
changing estimated effects. The resulting models therefore capture the 
typical pattern of operations, as opposed to the atypical conditions 
associated with disruption events.

To address potential nonlinearity, we estimated spline models for 
delay at start and passenger activity. This alternative specification 
yielded coefficients with the same direction and similar magnitudes as 
the models without influential observations. For interpretability, we 

report the models without influential observations (Table 3). Because 
tests indicated heteroskedasticity and within-day dependence (positive 
serial correlation), we compute route x date cluster-robust standard 
errors for inference and report 95 % confidence intervals and p-values 
based on those clustered standard errors. Robust standard errors also 
help mitigate potential bias concerns from small or uneven sample sizes 
(Judkins and Porter, 2016), such as trip counts varying across routes 
depending on service frequency and the observation period. No addi
tional weighting was applied since the imbalance reflects actual oper
ations rather than a sampling artifact.

In terms of model fit, the explanatory power varied across outcomes. 
The run time model explained a substantial share of variation (R² =
0.76). The run time deviation model showed a more moderate fit (R² =
0.46), while the headway deviation model captured less variation (R² =
0.15), reflecting that headway irregularities are likely influenced more 
by unpredictable disruptions than by systematic factors. These results 
are in line with expectations from previous literature (El-Geneidy et al., 
2011), meaning that systematic factors explain much of the level of run 
times while schedule deviations and headway variability are driven to a 
greater extent by unobserved or random disruptions.

6.2.1. Running time
Regression results presented in Table 3 confirm the statistically sig

nificant impact of the Pie-IX BRT corridor on bus travel time perfor
mance. Compared to the baseline local service (route 139 before BRT), 
the BRT service (route 439) is associated with a 229-second (3.8 min) 
reduction in running time in the northbound direction and a 269-second 
(4.5 min) reduction in the southbound direction ceteris paribus. These 
results reflect time savings of approximately 4 min per trip, demon
strating the effectiveness of BRT infrastructure in reducing in-vehicle 
travel time. The greater reduction in the southbound direction may be 

Table 3 
Regression model results.

Predictors Running time Running time deviation Headway deviation

Estimates CI Estimates CI Estimates CI

Intercept 2002.26*** 1988.84–2015.68 103.03*** 102.34–103.72 76.84*** 75.07–78.60
Temporal component
BRT ¡228.78*** − 252.19 – − 205.38 13.32*** 12.18–14.46 − 1.00 − 4.52–2.52
After BRT ¡128.55*** − 141.46 – − 115.64 ¡5.72*** − 6.34 - − 5.09 8.78*** 7.48–10.07
Direction ​ ​ ​ ​ ​ ​
South ¡163.42*** − 172.34 – − 154.50 ¡10.29*** − 10.68 - − 9.89 3.06*** 2.09–4.04
Time of day/week ​ ​ ​ ​ ​ ​
Early AM ¡20.80*** − 1.16 – 14.06 ¡0.81*** − 1.23 - − 0.38 ¡5.57*** − 6.48 - − 4.65
AM Peak 145.99*** − 27.91 – − 13.70 ¡2.55*** − 2.93 - − 2.17 ¡8.99*** − 9.95 - − 8.04
Mid-day 242.03*** 138.14 – 153.83 ¡0.98*** − 1.31 - − 0.66 ¡11.61*** − 12.49 - − 10.72
PM Peak 199.81*** 233.03 – 251.02 ¡4.35*** − 4.71 - − 3.99 ¡18.11*** − 19.18 - − 17.03
Weekday 41.92*** 190.88 – 208.74 2.94*** 2.50–3.39 ¡3.35*** − 4.30 - − 2.39
Trip delay ​ ​ ​ ​ ​ ​
Delay at start ¡0.28*** − 0.31 – − 0.25 ¡0.01*** − 0.01 - − 0.01 0.05*** 0.04–0.05
Passenger load ​ ​ ​ ​ ​ ​
Pass. activity 3.53*** 3.37 – 3.69 0.11*** 0.10–0.12 0.26*** 0.23–0.28
(Pass. activity) ² ¡0.004*** − 0.004 – − 0.003 0.00*** − 0.00 - − 0.00 0.00*** − 0.00 - − 0.00
Weather ​ ​ ​ ​ ​ ​
Rain (mm) 0.49* 0.07–0.92 0.02 * 0.00–0.04 − 0.04 − 0.08–0.01
Snow (cm) 1.86*** 1.48–2.23 0.02*** 0.01–0.04 0.09*** 0.05–0.13
Interactions ​ ​ ​ ​ ​ ​
After BRT * South 55.59*** 39.42–71.75 7.16*** 1.72–3.23 ¡2.66*** − 4.80 - − 0.52
BRT * South ¡40.73*** − 59.80 to − 21.66 2.81*** 3.31–4.68 ¡5.25* − 6.90 - − 3.60
BRT * Early AM 40.53*** 27.19–53.87 2.48*** 2.52–3.66 3.29* 0.48–6.10
BRT * AM Peak ¡50.98*** − 63.47 to − 38.49 3.99*** 6.74–7.93 ¡8.21*** − 10.87 - − 5.54
BRT * Mid-day ¡144.70*** − 156.93 to − 132.47 3.09*** − 7.24 - − 5.58 ¡9.33*** − 11.81 - − 6.86
BRT * PM Peak ¡73.05*** − 85.10 to − 61.00 7.34*** 0.02–0.02 ¡12.53*** − 14.94 - − 10.11
BRT * Weekday ¡28.50*** − 46.85 to − 10.13 ¡6.41*** − 0.03 - − 0.01 ¡12.52*** − 14.90 - − 10.15
BRT * Delay at start 0.22*** 0.18–0.25 0.02*** − 0.00–0.00 0.07*** 0.06–0.08
BRT * Passenger activity ¡2.05*** − 2.25 to − 1.85 ¡0.02*** 1.72–3.23 0.05* 0.01–0.09
BRT * (Passenger activity) ² 0.002*** 0.002–0.003 0.00 3.31–4.68 0.00 − 0.00–0.00
Observations 72,598 71,738 70,826
R2 0.755 0.456 0.153

Significance levels: * p < 0.005; ** p < 0.01; *** p < 0.001
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attributed to the southbound route making three fewer stops compared 
to the northbound route. Additionally, the detour around the Jean-Talon 
BRT station, still under construction during the analysis period, is about 
five hundred meters shorter in the southbound direction.

Interestingly, a spillover effect is observed for the local route 139, 
which experienced shorter travel times after the BRT became opera
tional. Specifically, trips on route 139 after implementation are 128 s 
shorter, with a slightly smaller benefit in the southbound direction 
(73 s), while keeping all values constant at their mean. This suggests 
corridor-level operational benefits, potentially driven by the introduc
tion of transit signal priority and intersection redesigns that improved 
traffic flow for all transit services along the Pie-IX boulevard.

Running time is found to be influenced by time-of-day patterns, with 
trips during most periods taking longer than those during the evening/ 
night period (the reference category), keeping everything else constant. 
Specifically, trips are 146 s longer during the AM peak, 242 longer 
during the midday period, and 200 s longer during the PM peak. These 
results align with expected increases in congestion during peak demand 
periods. However, the BRT service exhibits greater resilience to these 
fluctuations. Interaction terms show that, compared to local service, the 
BRT is 51 s faster during the AM peak, 145 s faster at midday, and 73 s 
faster during the PM peak. The variations in travel time for the BRT 
throughout the day may be partially explained by segments of the BRT 
that operate outside the corridor due to ongoing construction. Even so, 
the findings suggest that the BRT infrastructure successfully reduced the 
negative effects of peak-hour congestion on running times.

At the operational level, departure delays at the first stop show a 
compensatory effect. For every second of departure delay, total running 
time decreases by 0.28 s, reflecting driver attempts to make up lost time. 
This compensatory behavior is less pronounced for the BRT, where the 
same delay leads to a smaller time gain of 0.06 s. Passenger activity also 
significantly affects running time. Each boarding or alighting adds 3.53 s 
to the trip, but this effect is diminishing at higher passenger volumes, as 
indicated by the negative and significant squared term. On the BRT, the 
marginal effect of each passenger is lower, about one second less (1.48 s) 
likely due to the infrastructure advantages of the BRT corridor. This 
finding reinforces the benefits of allowing passengers to board and alight 
through all doors, especially on articulated buses with three doors, 
which operate along the BRT corridor.

Finally, weather conditions impact trip duration. Rain adds an 
average of 0.5 s per millimeter, and snow adds 1.86 s per centimeter. 
These effects are consistent across services highlighting the importance 
of including environmental controls in operational performance models. 
In sum, the BRT corridor demonstrates clear advantages in reducing 
running time and mitigating peak-period delays, while also enabling 
modest improvements to the local service.

6.2.2. Running time deviation
The second model examines the ratio of actual to scheduled running 

time, an indicator of schedule adherence and operational predictability. 
A value of 1.0 reflects perfect alignment with the schedule, while values 
above 1.0 indicate that trips are running longer than expected. In the 
model, all coefficient estimates were multiplied by one hundred to 
facilitate interpretation reflecting percentage changes. The results sug
gest a mixed pattern: while running time deviation improved for the 
local service after BRT implementation, the newly introduced BRT route 
experienced higher variability.

Specifically, the coefficient for the “After BRT” variable is associated 
with a 5.7 % reduction in running time deviation relative to the baseline 
(route 139 before BRT) pointing to a modest gain in reliability for local 
service, while keeping all other values constant at their mean. In 
contrast, the BRT route itself shows a 13 % increase in running time 
deviation, signaling potential operational instability despite its infra
structure advantages, ceteris paribus. This suggests that while BRT trips 
are faster (as shown in the running time model), they are less consistent 
when it comes to adhering to scheduled times. One potential 

explanation is that the schedules may not have been adequately updated 
to reflect actual post-implementation running times, leading to persis
tent mismatch between planned and observed performance during the 
early months of operation.

These results are reinforced by exploratory analysis based on STM’s 
service standard, which defines “on time” as trips within one minute 
early or three minutes late of schedule (STM, 2025). As shown in  Fig. 4, 
52.3 % of route 139 trips after BRT implementation were not on time, 
representing an improvement compared to 63.4 % before the BRT. 
However, 82.9 % of BRT trips fell outside of this on-time window, 
highlighting the reliability challenges faced during early implementa
tion. These distributional differences support the regression findings 
while underscoring the need for further schedule refinement.

Directional and temporal factors further explain variations in 
running time. Trips in the southbound direction are associated with 
10.3 % lower deviation compared to northbound trips, likely due to 
shorter distances, fewer stops, or more favorable traffic conditions, all 
else equal. However, the After BRT x South interaction suggests a sig
nificant increase (+ 7.2 %) in deviation post implementation for 
southbound service, likely due to delays accumulated from the north
bound direction. Time-of-day effects reveal that deviation is lower 
during the AM peak, midday, and PM peak compared to the evening and 
night period (the reference category). Yet for the BRT, the interaction 
terms show that deviation worsens during the day, with increases of 
+ 3.99 % in the AM peak, + 3.09 % at midday, and + 7.34 % in the PM 
peak compared to base level. These results point to greater unreliability 
for BRT during high-demand periods, likely due to bunching or station- 
level surges in boarding activity.

Additional model results provide insight into operator/driver 
response and external conditions. Departure delays at the start of a trip 
are associated with a slight reduction in run time deviation at baseline 
(–0.01 % per second), suggesting that drivers in the local route may 
attempt to recover time while in service. However, this effect reverses 
for the BRT, where the interaction term indicates a + 0.02 % increase in 
deviation per second of delay, keeping all else equal at their mean 
values. This suggests that BRT trips not only lack compensatory accel
eration but may even experience worsening schedule deviation when 
departing late, which can be due to corridor constraints or less flexible 
recovery strategies available. One such constraint is that the BRT must 
stop at every station, unlike the local route that operates on a stop- 
request basis. This rigid stopping pattern reduces drivers’ ability to 
adjust spacing in real time and may exacerbate schedule deviations 
when delays accumulate.

Passenger activity contributes to deviation. Each boarding or 
alighting adds 0.11 % to running time deviation for local service, and 
this effect is slightly lower for BRT trips, with the interaction term 
reducing 0.02 %, ceteris paribus. This suggests that BRT trips are less 
sensitive to passenger volume due to features like all-door boarding. 
Finally, weather conditions are positively associated with deviation. 
Each additional millimeter of rain each or centimeter of snow on the 
ground corresponds to a + 0.02 % increase in deviation, all else being 
equal.

In summary, while run time deviation improved slightly for local 
service, the early phase of BRT implementation was marked by 
increased variability, particularly during peak hours. These results 
emphasize the need to not only invest in infrastructure but to adapt 
operational strategies, such as schedule adjustments, holding strategies, 
or dynamic dispatching, to ensure service consistency.

6.2.3. Headway deviation
The third model assesses headway deviation, calculated as the ratio 

between actual and scheduled headways at the last stop along the 
studied segment. A value of 1.0 indicates perfect spacing between buses. 
Values greater than 1.0 reflect longer-than-scheduled gaps (vehicles 
becoming too spread out), while values below 1.0 indicate shorter-than- 
scheduled gaps (vehicles bunching together). Both directions signal 
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irregular service, often linked to variable dwell times, uneven passenger 
activity, and service delays. Similar to the running time deviation model, 
coefficient estimates were multiplied by 100 to reflect percentage 
changes.

The results show that overall headway regularity in the corridor 
worsened after the BRT implementation. The coefficient for the “After 
BRT” variable is positive and significant (+8.8 %), meaning that, across 
all services combined, headway deviation was higher in the post-BRT 
period compared to before. The BRT coefficient, by contrast, is not 
statistically significant, indicating that, when holding covariates con
stant, the BRT does not differ systematically from the local route overall. 
These model-based findings are consistent with the descriptive contrasts 
presented earlier: both the BRT and the local route after implementation 
show more irregular spacing than the local service before the BRT was 
introduced. Taken together, the evidence indicates that conditions in the 
corridor worsened following the BRT opening, with neither the new 
service nor the remaining local service matching the regularity observed 
before.

Directional effects add further nuance. Southbound trips were more 
irregular than northbound ones (+3.1 %). Yet the BRT is less exposed to 
this imbalance than the local service (–5.3 %). Time-of-day effects 
highlight improved spacing during daytime operations. Relative to the 
evening and night (reference category), headway deviation was lower 
during all other periods, with reductions of 5.6 % in the early AM, 9.0 % 
in the AM peak, 11.6 % midday, and 18.1 % in the PM peak. Interactions 
reveal that the BRT benefited more from these daytime improvements 
than the local route where deviation was reduced an additional 8.2 % in 
the AM peak, 9.3 % midday, and 12.5 % in the PM peak. On weekdays, 
headway deviation was lower than on weekends (–3.4 %), and the BRT 
gained an additional reduction of 12.5 %.

Operational and environmental conditions contributed the most to 
irregularity. Each second of delay at the start increased deviation by 
0.05 %, and this effect was amplified for the BRT (+0.07 %). Passenger 
activity increased deviation by 0.26 % per boarding or alighting, with 
the BRT showing an additional increase of + 0.05 %. Snow accumula
tion reduced reliability (+0.09 % per cm), whereas rainfall had no sig
nificant effect.

Overall, these findings highlight that service along the Pie-IX 
boulevard became less reliable after the BRT was introduced. The new 
BRT service did not outperform the local route baseline and remains 
vulnerable to departure delays, passenger surges, and winter conditions. 
While the BRT benefited more from daytime operations and was less 
affected by southbound imbalance, the broader picture is one of 
increased irregularity in spacing compared to pre-BRT conditions. One 
potential contributor is the lingering construction along the corridor, 
including the southern extension works and the ongoing construction 
around Jean-Talon station. Even so, findings underscore the need for 
more active supervision and real-time control strategies.

6.3. Policy implications

The findings from the Pie-IX BRT analysis suggest several implica
tions for the planning and operation of bus rapid transit systems. The 
dedicated infrastructure along much of the corridor contributed to faster 
and more stable running times, reinforcing the importance of priority 
measures in enhancing service speed. At the same time, headway reg
ularity worsened relative to the pre-BRT baseline, indicating that 
infrastructure investments alone are not sufficient to guarantee reliable 
operations, particularly when parts of the corridor continue to operate in 
mixed traffic. This aligns with prior research showing that while dedi
cated rights-of-way reduce variability, real-time control strategies 
remain essential for managing headway deviation and preventing 
bunching (Ma et al., 2021; Muñoz et al., 2013).

A further nuance is that while the local service exhibited a modest 
reduction in running time deviation, the BRT itself recorded faster trips 
but greater variability. This pattern indicates that schedules were not 
fully recalibrated after implementation, leaving vehicles with limited 
recovery margins to absorb day-to-day fluctuations. These findings 
imply that STM should apply post-launch schedule adjustments, 
ensuring that timetables reflect actual operating conditions and prevent 
schedule variability from undermining the speed gains achieved by the 
dedicated corridor from the user perspective.

The deterioration of headway regularity along the corridor high
lights the need for active headway management. Threshold-based 
holding strategies have long been shown to stabilize service when 
applied at key stops (Fu and Yang, 2002), while more advanced deter
ministic and predictive approaches adapt to demand and travel time 
variability (Muñoz et al., 2013). Robust model predictive control, which 
explicitly accounts for uncertainties such as fluctuating passenger de
mand and running times, has demonstrated substantial gains in simu
lation studies (Ma et al., 2021). Leveraging STM’s control center to 
implement systematic holding and dynamic dispatching could therefore 
provide a practical means to stabilize headways along the Pie-IX 
boulevard.

The analysis showed that delays at start of trips, passenger activity, 
and snow accumulation significantly worsened reliability along the 
corridor. These results underscore the importance of strategies tailored 
to local conditions. Real-time probabilistic dispatching (Berrebi et al., 
2015) illustrate ways of adapting dynamically to passenger surges, while 
targeted snow clearance along the corridor is critical to prevent 
weather-induced irregularity.

The local service also experienced worsening headway reliability 
after BRT implementation, despite not sharing stops with the BRT. This 
decline is likely tied to the lingering construction impacts in the 
southern section and around Jean-Talon station. These findings suggest 
the need for management plans during and after major infrastructure 
works, so that benefits for one service do not come at the expense of 
another.

Although not directly explored in the analysis, the remaining mixed- 

Fig. 4. On-time performance before and after the BRT route.
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traffic sections along the corridor may still influence reliability in the 
dedicated segment through spillover delays at transitions or in
tersections. This points to the value of complementary measures such as 
conditional signal priority (Anderson and Daganzo, 2020) to mitigate 
delays at points where buses re-enter mixed flow. Overall, these impli
cations emphasize that realizing the full potential of BRT requires 
combining infrastructure investments with robust real-time operational 
management measures.

7. Conclusions

This study provides empirical evidence of the operational impacts 
associated with the implementation of a new Bus Rapid Transit (BRT) 
corridor in Montreal, Canada using detailed AVL/APC data and a before- 
and-after comparative design. The results show that the Pie-IX BRT was 
able to improve travel time performance. Compared to the previous 
local service, BRT trips were four minutes faster, particularly during 
peak hours. These gains reflect the combined effects of the corridor’s 
design, including dedicated bus lanes, all-door boarding, and larger 
vehicle capacity. In addition, modest improvements were observed for 
the local route operating in parallel to the BRT corridor (about 2 min), 
suggesting potential spillover effects related to transit signal priority and 
general improvements to corridor infrastructure.

Despite clear gains in travel time, the study highlights persistent 
challenges with respect to service regularity. While the local service 
showed a modest improvement in running time deviation after BRT 
implementation, the BRT experienced a significant increase in vari
ability, indicating weaker schedule adherence. At the same time, 
headway deviation worsened across the corridor, where both the BRT 
and the local service after implementation displayed less regular spacing 
compared to the pre-BRT baseline. These patterns suggest that infra
structure upgrades alone were not sufficient to ensure consistent per
formance. One likely contributor is that early BRT schedules may not 
have been fully adapted to actual operating conditions. In addition, 
variability in stop-level demand, lingering construction along Pie-IX 
boulevard, and winter conditions likely amplified irregularities.

The findings underscore the importance of service management 
strategies during the initial stages of BRT implementation and the need 
for a more flexible scheduling approach. Infrastructure investments 
must be accompanied by real-time operational oversight, including 
schedule calibration, active dispatching, and headway control man
agement (bus holdings), particularly during periods of high demand. 
Moreover, the observed benefits for the local bus route suggest that BRT 
implementation can contribute to broader corridor performance gains, 
especially when accompanied by system-wide operational enhance
ments such as signal priority and intersection redesign.

This study is not without limitations. It focuses on a single BRT 
corridor over a limited post-implementation window of five months. As 
such, the results primarily reflect short-term impacts and may not fully 
capture performance once the system has matured and stabilized. While 
our models control for observed weather conditions, the post- 
implementation data available covers only winter months. This limits 
our ability to assess whether the results generalize to other seasonal 
conditions. Future research could extend the analysis to subsequent 
periods to examine how operational outcomes evolved over time, 
particularly as construction along the route subsides and the operators 
gain more experience with the BRT. Further research could explore the 
effects of adaptive scheduling and control strategies introduced after 
implementation, as well as examining the relationship between opera
tional performance and passenger satisfaction using integrated datasets. 
Comparative studies across other BRT corridors would help assess the 
generalizability of the findings from this study.

Overall, the results of this study point to the value of continued 
performance monitoring and adaptive management in the successful 
delivery of BRT systems. By aligning the BRT infrastructure with transit 
planning and operations, transit agencies can ensure that the benefits of 

speed and reliability are not only achieved but sustained.
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