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ABSTRACT 

  Micromobility, including the use of shared electric scooters (e-scooters), emerged rapidly 

in North America and is marketed as an alternative to car reliance, especially for short distance 

travel in urban settings. Our study aims to contribute to our understanding of how shared e-scooters 

are used by examining the factors that determine the presence of e-scooters, as well as those that 

cause variation in e-scooter presence between each consecutive hour and throughout the day. The 

object of this study is to investigate how temporal, land use, transport infrastructure, and weather 

attributes impact available e-scooter distribution and variation in e-scooter presence in Washington 

D.C., to reveal use patterns and develop a framework for studying citywide e-scooter systems. 

Data on the location of e-scooters in the Washington D.C. area over six full days was collected. 

Then, multilevel mixed effects linear regression models were generated to investigate the impact 

of time, land use characteristics, and the built environment while controlling for weather 

conditions. We found that temporal effects were present, as weekends and late nights were 

associated with fewer e-scooters and less variation in hourly e-scooter presence. We observed that 

the average number of e-scooters available per 0.07 mile2 on weekends was 0.26 (7.81%) fewer 

than on weekdays, and 0.82 (24.62%) fewer during the late night than other times of day, all else 

held constant. Higher population density, density of places of interest, and activities were generally 

associated with more e-scooters and contributed to more change in the hour-to-hour numbers of e-

scooters but less variation throughout the day. Bikeshare stations and bicycle lanes positively 

impacted presence, they increased the odds of e-scooter presence by 3.16 and 2.73 times 

respectively and change in the average number of e-scooters nearby. The hourly change in the 

average numbers of e-scooters near bikeshare stations was 0.19 all else held equal, and it is unclear 

whether e-scooters were used as first-mile last-mile solutions for public transport. These findings 

can help policy-makers in cities with comparable climates, land use characteristics, and transport 

infrastructure. The findings can help city planners and engineers make appropriate decisions in 

recognizing e-scooters as an urban mobility solution, where to expect them to emerge in different 

parts of the city, and how e-scooters interact with established transport systems.   
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1 INTRODUCTION  

E-scooter companies first launched in the United States in 2017 and the vehicles started 

appearing in cities across the country that fall (Dickey, 2018a; Teale, 2019). In fact, since fall 2017 

the growth of e-scooters in the U.S.A. has been epic and speedy: shared micromobility use in the 

form of shared e-scooters and bicycles has grown nearly 2.5-fold in 2018 compared to 2017 and 

1.6-fold in 2019 compared to 2018, reaching 136 million trips per year by the end of 2019 

(NACTO, 2020). Shared e-scooter use drove the growth of shared mobility in the U.S., which 

topped 38.5 million trips in 2018 and grew to 86 million trips in 2019 (NACTO, 2019, 2020). In 

2019 e-scooter companies functioned in 109 cities in the U.S., which is 45% more cities than in 

2018 (NACTO, 2020). The private nature of the micromobility industry, which has attracted over 

a billion dollars of investment as a business opportunity, is playing a role in supporting the growth 

of e-scooters across North America (Möller et al., 2018). However, some American cities such as 

Portland, Or and Washington D.C. have also started e-scooter pilot programs (DDOT, 2019b; 

Irfan, 2018; Portland Bureau of Transportation, 2018c). Based on the contents of the pilot 

programs, it is evident that cities consider e-scooters as a potentially helpful in meeting their 

transportation goals to shift travel away from private motorized cars (DDOT, 2010, 2020; Portland 

Bureau of Transportation, 2018a). 

 Although e-scooters are relatively new, there has been some research into e-scooter use 

and their environmental impact, which depends on the life cycle of the vehicles and the modes of 

transport they are replacing. The impact of temporal, land use, transport infrastructure, and weather 

attributes on dockless bikeshare systems, which are similar to e-scooter systems, is documented in 

the literature and is useful in understanding for transport planning but has not extensively been 



studied for e-scooters. This research aims to help cities with e-scooter pilot programs understand 

the determinants of shared e-scooter distribution, which they can in turn leverage to help meet their 

transportation goals through specific parking and distribution policies. 

1.1 E-SCOOTER DRIVER AND PARKING BEHAVIOR  

Arnello and Fang conducted an observational study about e-scooter driver behavior as it  

compares to cycling (Arellano & Fang, 2019). They found that in San Jose, California e-scooters 

tend to cruise at lower speeds and they exhibit lower helmet use than cyclists (Arellano & Fang, 

2019). Similar to cyclist behavior, men on e-scooters were found to travel faster than women on 

e-scooters, although overall e-scooter travel speeds were faster on streets than sidewalks (Arellano 

& Fang, 2019). Notably, cellphone use was low among e-scooter drivers than any other mode 

(Arellano & Fang, 2019).  

Since shared e-scooters are a new mode of transport, there is uncertainty about the impacts 

of the growth of shared micromobility on the built environment. Concerns persist about e-scooters 

cluttering sidewalks when parked. A 2018 study of e-scooter parking in San Jose, California 

concluded that although 72% of e-scooters were parked on the sidewalk, 90% are well parked in 

ways that comply with bicycle parking rules and do not infringe on pedestrian traffic (Fang et al., 

2018). James et al. further corroborated these findings in their observational study of 606 e-

scooters parked in Rosslyn, Virginia (James et al., 2019). They found that only 16% of e-scooters 

were not parked properly and 6% blocked the pedestrian right-of-way (James et al., 2019). A 

Portland, Oregon report on e-scooter use in the city also found that e-scooter parking was typically 

appropriate, yet reported concerns from residents about precarious parking in addition to illegal 

sidewalk use (Portland Bureau of Transportation, 2018a). Thus, city officials have an important 



role to play in ensuring that e-scooters are parked and used properly to avoid negative effects of e-

scooter use.  

1.2 ENVIRONMENTAL IMPACTS – GREENHOUSE GAS EMISSIONS 

E-scooter companies market themselves as sustainable transport, namely that they are 

electric vehicles that can induce mode shift, however understanding the environmental impact, 

including the greenhouse gas emissions of e-scooter use is complex (Bird, 2020; Hollingsworth et 

al., 2019; Lime, 2020). The greenhouse gas emissions associated with e-scooter use depends on 

the lifecycle emissions of the vehicle and mode of the trip they are replacing (i.e. – what mode the 

traveler would have used if an e-scooter were not available) (Hollingsworth et al., 2019; Moreau 

et al., 2020). The lifecycle assessments account for the materials and manufacturing of e-scooters, 

as well as the collection of e-scooters for charging when calculating their greenhouse gas emissions 

(Hollingsworth et al., 2019; Moreau et al., 2020; OECD/ITF, 2020). For example Hollingsworth 

et al. analyzed Xiaomi M365 e-scooters, which were representative of the e-scooter that companies 

such as Bird and Lyft used at least for the fall of 2018 in North America (Dickey, 2018b; 

Hollingsworth et al., 2019). Although using an e-scooter instead of walking or a non-electric 

bicycle would consistently be associated with larger relative greenhouse gas emissions, when 

replacing a personal automobile trip, e-scooter use results in a net decrease of environmental 

impacts (Hollingsworth et al., 2019; Moreau et al., 2020).  

The life cycle analysis of the greenhouse gas emissions per e-scooter is highly dependent 

on the lifespan of the vehicle (Hollingsworth et al., 2019; Moreau et al., 2020; OECD/ITF, 2020). 

The literature conducts sensitivity tests by generating lifecycle analyses with a range of different 

lifespans, such as 0.5 – 2 years, 1 month – 2.5 years, 9.6 months for first generation e-scooters and 

1.97 years for newer e-scooters (Hollingsworth et al., 2019; Moreau et al., 2020; OECD/ITF, 



2020). With their base case assumptions, including that an e-scooter lifetime is between 0.5-2 

years, e-scooters are associated with life cycle greenhouse gas emissions relatively greater than 

65% of the transport modes they replace: a bus with high ridership, an electric bicycle and a 

personal bicycle on a passenger-mile traveled basis (Hollingsworth et al., 2019). Based on an 

analysis of Bird e-scooters in Louisville, KT, the average lifespan of an e-scooter is 28.8 days, 

which would imply that e-scooters might have relatively higher greenhouse gas emissions than a 

larger percentage of other transport modes than Hollingsworth et al. predict (Griswold, 2019; 

Hollingsworth et al., 2019). Conversely, Mureau et al. found that e-scooters must have a 9.5-month 

lifespan to have a lower global warming potential than using a combination of public transport, a 

personal car, bicycling, electric bicycling, motorcycling and walking in Brussels, where their study 

took place (Moreau et al., 2020). The ITF study confirmed that e-scooter sharing is associated with 

higher emissions than walking, public transport and cycling, although notes the environmental 

benefit of multimodal trips including shared e-scooters and public transit (OECD/ITF, 2020).  E-

scooter sharing companies now use vehicles that are more durable and the lifespans of their 

vehicles are increasing with innovation, which should decrease the environmental impacts of e-

scooters (Hawkins, 2019; Moreau et al., 2020; OECD/ITF, 2020). In fact, e-scooter operators even 

repaired first generation e-scooters to extend their lifespan to a year from a few weeks or months, 

and newer models are designed to have two-year lifespans (Möller & Simlett, 2020).  

1.3 JOURNEYS REPLACED BY E-SCOOTERS 

Shared e-scooters can increase the number of trips where active transport modes are 

competitive with the automobile (Smith & Schwieterman, 2018). An Arlington, VA survey found 

that 52% of e-scooter users reported a decrease in taxi and ride hailing service use, and 35% 

reported a decrease in personal car use (Chowdhury et al., 2019). Chowdhury et al. found that if 



e-scooters were not available, 39% of e-scooter users would have taken a taxi or ridehailing 

service, 33% of those in the survey would have walked, and 7% would have used public transit 

(Chowdhury et al., 2019). A review of the Portland Bureau of Transportation’s (PBOT) first four-

month e-scooter pilot program in 2018 included a survey of e-scooter users who participated in 

the pilot (Portland Bureau of Transportation, 2018a). PBOT found that 17.7% of those who were 

surveyed would have driven if an e-scooter had not been available, and 19.9% of respondents 

would have used a taxi or ride hailing service (Portland Bureau of Transportation, 2018b). 

However, e-scooters were shown to replace walking and public transit trips in Portland as well, 

where 36.3% of those surveyed would have walked, and 8.7% would have used public transit for 

their last e-scooter trip if an e-scooter were not available (Portland Bureau of Transportation, 

2018b). It should be noted that the percent of e-scooter trips that replace personal vehicle and taxi 

or ridehailing trips likely vary in different geographic contexts where people exhibit different 

travel patterns. For example, in Vienna a survey 110 shared e-scooter users found that e-scooter 

trips mostly replaced walking and public transit trips, while people who used shared e-scooters 

rarely replace car trips (80-90% responded that they never did) (Laa & Leth, 2020). Similarly, a 

survey of 380 people who used e-scooters in New Zealand found that 64% of e-scooter trips 

replaced trips that would have been made by walking, cycling, skateboarding, e-biking, or would 

not have occurred, and 28% replaced personal or for hire car travel (Fitt & Curl, 2019).   

1.4 BIKESHARE AND E-SCOOTERS 

E-scooter systems share some fundamental characteristics with bikeshare systems. Since 

there is little literature about how to measure determinants of e-scooter distribution, we will look 

to how determinants of bikeshare use are investigated in section 1.5. Before doing so, in this 

section we compare the characteristics of bikeshare and e-scooter systems to explain why studying 



the determinants of e-scooter distribution can be modeled with similar approaches to how the 

determinants of bikeshare system use have been studied. Both e-scooter and bikeshare systems 

allow users to access and pay for devices on an as-needed basis and the companies take care of the 

maintenance, storage and security aspects of bicycle and e-scooter ownership (Parkes et al., 2013).  

Bikeshare systems exist in both docked and dockless forms while e-scooter systems only exist in 

dockless forms in North America (NACTO, 2019). In fact, station-based bikeshare systems have 

existed in North America since 2009, when BIXI launched in Montreal (Imani et al., 2014).  

Additionally, shared e-scooters are only electric while bikeshare programs exist with both electric 

assist bicycles and fully manual bicycles (NACTO, 2019). Further, the relationships between the 

public sector and bikeshare systems and shared e-scooter systems are different. Bikeshare systems 

in North America operate as publicly owned and privately operated models in addition to for-profit 

vendor operated models (Parkes et al., 2013). Conversely, e-scooter systems are privately operated 

and funded through investments (NACTO, 2019). McKenzie investigated the difference in use 

patterns between Lime shared e-scooters and Capital Bikeshare bicycles in Washington D.C. 

(McKenzie, 2019). McKenzie suggested that Capital Bikeshare trips were more commuter oriented 

and Lime e-scooter trips were more leisure oriented, although theorized that this might be because 

Capital Bikeshare is more established in the city than Lime e-scooters are (McKenzie, 2019).  

 

1.5 SHARED MICROMOBILITY AND THE BUILT ENVIRONMENT 

There is limited research into the determinants of dockless bikeshare or e-scooter use. Thus, in 

order to understand how to study the determinants of e-scooter use, the determinants of bikeshare 

systems, which are more established and share some similarities with shared e-scooter systems 

(see section 1.4) can be reviewed as well. Shen et al. studied dockless bicycle sharing in Singapore 



and found a connection between the built environment, fleet size, and weather on dockless bicycle 

use (Shen et al., 2018). Shen et al. found that mixed land use, transport infrastructure and cycle 

infrastructure positively impacted dockless bikeshare use in Singapore, while rainfall negatively 

impacted it negatively (Shen et al., 2018). Further, a study of the determinants of MoBike’s 

dockless bikeshare program in Shanghai found that bicycle trip density is positively associated 

with floor area ratio (a measure of urban density), mixed land use, higher percentages of 

residential, green space, and industrial land uses, and the density of primary and secondary roads 

(Tu et al., 2019). Although there are parallels between bikeshare systems and dockless e-scooter 

systems, our study is unique as it addresses the relationship between land use, transport 

infrastructure, temporal, and weather variables and e-scooter use in a North American context. 

Noland investigated the impact of temporal and weather variables on the number of e-scooter trips 

per day and average daily trip speed and distance (Noland, 2019). The study highlighted that e-

scooter trips are geared towards short commute trips and that warmer weather lead to longer and 

faster trips while precipitation reduces use overall (Noland, 2019). This suggests an opportunity 

for further research: to investigate the determinants of e-scooter use at a finer temporal scale, the 

hourly scale, and to consider more determinants of e-scooter use together: temporal, land use, 

transport infrastructure, and weather attributes. 

The use of regression models to study determinants of docked bikeshare flows is established 

in the literature (Buck & Buehler, 2012; El-Assi et al., 2017; Imani et al., 2014). Imani et al. and 

El-Assi et al., used multilevel regression models to investigate how land use, temporal, weather, 

and transport infrastructure attributes impact daily and hourly bicycle flows in station-based 

bikesharing systems in Canadian cities (El-Assi et al., 2017; Imani et al., 2014). Imani et al. found 

that usage was higher during the week compared to the weekend, closer to the central business 



district (CBD), in more densely populated areas, and in the evening compared to other times of 

day (Imani et al., 2014). Imani et al. and El-Assi et al. also found that bikeshare use was connected 

to station density and cycle infrastructure in an area (El-Assi et al., 2017; Imani et al., 2014). Buck 

& Buehler studied the determinants of daily bikeshare use in Washington D.C., and similarly found 

that bicycle infrastructure, population density and density of bars and restaurants in a location 

increased bikeshare use (Buck & Buehler, 2012). Comparing these findings to our study can 

highlight differences or similarities between docked and dockless shared vehicle use and shared 

vehicle type. Additionally, these studies were able to reveal bikeshare use patterns that 

policymakers and transport planners could use to plan for bikeshare use. They demonstrate the 

relevance of using multilevel regression models to study the impact of temporal, land use, transport 

infrastructure, and weather determinants on bikeshare use, which highlights the knowledge gap 

since this has not been investigated yet for e-scooter distribution.  

 

2 MATERIAL AND METHODS 

Our approach to studying determinants of e-scooter distribution in Washington D.C. is 

summarized in Figure 1. We started by collecting e-scooter location data and intersecting it with 

temporal, land use, transport infrastructure, and weather data. Next the data was analyzed with 

multilevel regression models to quantify the determinants of e-scooter presence as well as hourly 

and daily variation in e-scooter presence. To achieve this, each model had different dependent 

variables and dataset parameters.  



 

Figure 1 Research process flow chart 

2.1 PRESENCE OF E-SCOOTERS 

Washington D.C. was selected for this study because it has a relatively mature shared e-

scooter network compared with other North American cities. E-scooters have been in the city since 

2017 (Teale, 2019). Additionally, Washington D.C.’s District Department of Transport (DDOT) 

provides real time access to shared e-scooter data as well as an expanse of publicly available 

descriptive information. DDOT requires companies that have permits to operate dockless vehicles 

in Washington D.C. to provide public access to the current location of their vehicles that are not 

in use through an application programming interface (API) (DDOT, 2018). The data for each of 

the six companies that operate dockless transport services in Washington D.C.: Bird, Jump, Lime, 

Lyft, Skip, and Spin, is available through APIs on the DDOT website (DDOT, 2019a). The APIs 

were leveraged to collect the location data of e-scooters for this study. It is important to note that 

the details regarding the e-scooter location varied between each company, as some reported 

lat/long only while others reported e-scooter unique identification numbers.  

Multi-level mixed effects regression models

E-scooter data
• Lat / lon
• Timestamp
Source: company APIs

Sociodemographic data
• Census tract population density
• Census tract median income
Source: DC GIS Open Data, US 
Census Bureau

Land use data
• Museums
• Marketplaces
• Bars & restaurants
• Part of the CBD
• Part of a college campus
• Part of a national park
Source: DC GIS Open Data

Transport infrastructure data
• Bus stops
• Metro stations
• Parking meters
• Capital Bikeshare stations
• Bicycle lanes
Source: DC GIS Open Data, DDOT

Datasets intersected spatially & temporally

Model 1 
• Logit
• Presence of e-

scooters

Model 2 
• Linear
• Average number of 

e-scooters

Model 3 
• Linear
• Hourly change in

average number of
e-scooters

Model 4 
• Linear
• Daily coefficient of 

variation



In total 240,624 observations of e-scooters in Washington D.C. were collected over the 

course of six days in 2019: Sunday May 12th, Monday May 13th, Tuesday May 14th, Thursday 

May16th, Saturday June 1st, and Friday June 14th. Data collection was conducted over the course 

of three weeks between May and June 2019. Unfortunately, due to technical difficulties with the 

collection, such as the APIs pausing the data collection, only six full uninterrupted days of data 

were achieved. Although six days is a short study period, especially compared to some studies on 

determinants of docked bikeshare use which are four months (Imani et al., 2014) and a yearlong 

(El-Assi et al., 2017), there is precedent for using study periods that are on the day scale, and not 

the month scale, such as Shen et al.’s study which included nine days of dockless bicycle data 

(Shen et al., 2018). Given the precedent of using nine days to establish trends about dockless 

bicycle data (Shen et al., 2018), six days’ worth of e-scooter data is adequate to establish trends. It 

should also be noted that Sunday May 12, 2019 was Mother’s Day, however since that is not a 

legal holiday, it is not observed with business closures or public transport service changes. It is 

possible that the short study period introduced uncertainty in the data, for example if the data is 

unrepresentative. Weather during the study was controlled for in an attempt to remedy this 

uncertainty.  

In order to prepare the data for the model, Washington D.C. was divided into 1,671 

geographic grid cells areas, referred to as fishnets, which were 0.07 miles2 (0.19 km2) squares 

using ArcMap. Grid cells were selected as the unit of analysis instead of zones because they are a 

reliable representation of a space and are more computationally efficient than zones (Miller et al., 

2004). The fishnets were sized so that they were small enough that a change in the concentration 

of e-scooters could be seen from hour to hour and to avoid aggregation bias (Miller et al., 2004).  

Figure 2 depicts the distribution and concentration of e-scooters in each fishnet in Washington 



D.C. throughout the day on Thursday, May 16, 2019. We observe that e-scooters were highly 

concentrated in the central business district and near the subway lines. Additionally, we observe 

that e-scoters are more highly concentrated later in the day, with the highest concentration in the 

early afternoon, and lowest concentration during the late night. Further, the concentration of e-

scooters was higher in the evening than the morning. 

No-locking zones where e-scooters are not supposed to be parked are apparent on the 

applications that are used for renting e-scooters, such as Lime. In light of the absence of a 

centralized database for no-locking zones, they are not outlined in DDOT’s terms and conditions 

for e-scooter companies to operate in Washington D.C., the map of no-locking zones on the Lime 

application was used to locate fishnets that were completely within no-locking zones (DDOT, 

2019c). Twenty-four fishnets were completely in the Washington Monument & Grounds, West 

Potomac Park, Lincoln Memorial, Vietnam Veterans Memorial, FDR Memorial, East Potomac 

Park, and Lady Bird Johnson Park national parks, and were considered for removal from the 

dataset in order to avoid a zero inflated model. However, about a third of the sample of 24 fishnets 

fully within no-locking zones exhibited e-scooters over the course of the 144 hours. 31.11% of the 

3,456 observations that occurred in no-locking zones had e-scooters, which is very close to the 

overall percent of the 240,624 observations which have e-scooters, 32.52% (see Table 2). Thus, 

we concluded that e-scooter riders may not have respected no-locking zones or different companies 

had different no-locking zones, and the 24 fishnets that were considered for removal because of 

being fully in no-locking zones were kept for the analysis since they did not zero-inflate the data. 

 



2.2 COVARIATES 

The explanatory variables that were used in this study are related to time, land use, transport 

infrastructure, and weather. Collinearity among the explanatory variables was checked and guided 

our decision making process for which variables to include in the models. The temporal variables 

were used to analyze the effects of day of the week and time of day on e-scooter presence. We 

divided the 24-hour day into four six-hour categories: 12AM to 6 AM (late night), 6AM to 12 PM 

(morning), 12PM to 6 PM (afternoon), and 6PM to 12 AM (evening) and these were entered into 

the models. Another dummy variable was entered to indicate that the observation was taken on a 

weekend or weekday in the models. 

The land use and transport infrastructure data was collected from a combination of 

Washington D.C.’s Open Data initiative and the U.S. Census Bureau’s OnTheMap application 

(DC.GOV, 2019; U.S. Census Bureau, 2015). The land use variables include various 

sociodemographic and land use characteristics, to understand how they impact e-scooter 

distribution and variation in e-scooter distribution. Sociodemographic effects were measured at 

the census tract and fishnet level and used to depict the populations that are near e-scooters. The 

variables collected for analysis include the number of jobs per fishnet, the weighted population 

density in the census tract that the fishnet is a part of, and the weighted median household income 

of the census tract that the fishnet is a part of. The population density of the census tract and the 

median income are depicted in Figure 3, where there is greater population density surrounding the 

CBD and on the outskirts of the city boundary. There are higher median income neighborhoods 

further away from the CBD and lower median income neighborhoods closer to the middle of the 

city. Additionally, the median income was divided into four categories and treated as a set of 

dummy variables in the models in order to be more clearly interpreted: low income (less than or 



equal to $50,000), low-medium income (greater than $50,000 and less than or equal to $100,000), 

high-medium income (greater than $100,000 and less than or equal to $150,000), and high income 

(greater than $150,000). Land use variables, which are depicted in Figure 4, were used to capture 

the type of locations people would want to access using e-scooters. The number of museums, 

marketplaces (grocery stores and healthy corner stores), liquor licenses, and restaurants and cafes 

per fishnet were collected for the regression analysis. Additionally, whether the fishnet is part of 

the CBD, a college or university campus, or a national park were included as dummy variables. 

The number of jobs per fishnet, which was collected from the Census Bureau, was found to be 

highly correlated to the CBD, so the number of jobs per fishnet was excluded from the models. 

Models were tested with the number of jobs instead of if the fishnet is a part of the CBD, and they 

were found to be adequate. However, we decided to keep the CBD variable instead of the number 

of jobs because we were interested in exploring the relationship between the CBD, e-scooter 

presence and variation in e-scooter presence. Additionally, the number of restaurants and cafes 

was found to be highly correlated with the number of liquor licenses in an area. Thus, the locations 

of restaurants and cafes from DC Open Data were excluded from our analysis. Since bars and 

restaurants typically have liquor licenses, the list of locations of liquor licenses is considered to be 

a representative list of bars and restaurants.   

The transport infrastructure characteristics were used to describe the type of infrastructure 

that is more conducive to e-scooter presence and the variation in presence, such as the number of 

bus stops, metro stations, parking meter spaces, and Capital Bikeshare stations per fishnet. 

Additionally, the presence of a bicycle lane in the fishnet was included in the models as a dummy 

variable. The number of parking meter spaces was included as an indication of car traffic in the 

area. 



Hourly weather information for Washington D.C. was collected from the Dark Sky API 

("Dark Sky API," 2019) in order to control for the impact of weather. At the same time, the data 

was used to identify weather conditions that could be conducive to e-scooter presence and variation 

in e-scooter presence, particularly that cause variations in e-scooter presence between one hour to 

the next and throughout the day. We collected hourly temperature, precipitation intensity, 

humidity, wind speed, and cloud cover data for Washington D.C. for the day of e-scooter data 

collection. We found cloud cover to be correlated with precipitation intensity and was 

subsequently removed from the modelling process.  

 

 



 
Figure 2 Average number of e-scooters during hours throughout the day 

 



 
Figure 3 Sociodemographic characteristics of Washington D.C. 

 



20 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Land use in Washington D.C.
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2.3 MODEL DEVELOPMENT, PROCESSING AND VALIDATION 

Prior to modelling, the average number of e-scooters present as well as the collected land 

use and transport infrastructure information was intersected for each fishnet. This was done for the 

entire Washington D.C. region. To clarify, the fishnet is used as the spatial unit of analysis, while 

the hour of data collection is the temporal unit.  

The analysis of the impact of covariates on e-scooter location patterns was carried out 

through four regression models in Stata. The first model (Model 1) aimed to understand the impact 

of the covariates on the likelihood of there being at least one e-scooter present in a fishnet within 

the hour. The second model (Model 2) builds upon the first and examined, for those observations 

where at least one e-scooter was observed, the factors that contribute to a higher average number 

of e-scooters present in the fishnet within the hour. The third and fourth models were further 

extensions of the first two, as they examined the factors that cause a variation in the number of e-

scooters present in a fishnet. Specifically, the third (Model 3) examined the hour-to-hour variation 

for observations where a difference in average e-scooter numbers was observed between the 

present and the previous hour. The last model (Model 4) examined the factors that influence an 

overall variation in the average presence of e-scooters throughout the day for each fishnet using 

the coefficient of variation. The coefficient of variation per fishnet was generated by dividing the 

standard deviation of the average number of e-scooters per fishnet per day (𝜎,) by the average 

number of e-scooters per fishnet per day (𝜇,ሻ: 

 

Coefficient of Variationi,j = 
ఙ,ೕ
ఓ,ೕ

 

 

Thus, the coefficient of variation indicates how much the average number of e-scooters per fishnet 

varies throughout the day. The models were selected to examine the degree of e-scooter presence 
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(Models 1 and 2) and then to investigate degrees of variation in e-scooter presence (Models 3 and 

4). Additionally, they were selected to start broad with Model 1 taking in to account all of the 

observations and then narrowing down the samples with Models 2, 3, and 4 based on their 

objectives. 

Multilevel mixed effects regression modelling was used due to the incorporation of 

longitudinal panel data (every hour for six days) for each fishnet (geographic unit of analysis), and 

as they are documented in the literature for investigating determinants of bikeshare use (El-Assi et 

al., 2017; Imani et al., 2014). Additionally, multilevel mixed effects models account for similarities 

within the nested levels that are not accounted for in the covariates in the dataset, which can help 

account for spatial and temporal auto-correlation. The temporal levels of each model varied, from 

every hour for six days (144 hours) to simply six days. Additionally, the size of the units of analysis 

on the geographic level was consistently the same (a fishnet), although the number of fishnets 

included in each model varied. To clarify with an example: the total number of observations 

available in Model 1 is 144 hours (24 hours over 6 days), multiplied by 1,671 (the total number of 

fishnets), equally to 240,624 observations. Thus, a two-tiered multilevel model with panel data is 

called for to analyze the presence of e-scooters in each fishnet for different periods of time (by 

hour and by day). To validate the models, bootstrapping with replacement was carried out for 

Models 1, 2, and 3 to ensure that the statistical significance values and confidence intervals for 

each covariate were a reliable representation of the entire dataset. The sample size was limited to 

10,000 in the bootstrapping process to avoid sample biases due to a large number of observations. 

Thus, bootstrapping was limited to Models 1, 2, and 3 because they had sample sizes larger than 

10,000 and bootstrapping was not necessary for Model 4 because its sample size was smaller than 

10,000. Model 4 was still included because it provided a measure of the determinants of variation 
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in e-scooter presence over the course of the day rather than hourly. A summary of the four models 

carried out in the analysis is shown in Table 1. It should be noted that the initial data set is zero-

inflated, and to account for this, we used a logit model to differentiate between zero and above 

zero counts (Model 1) and then a linear regression model which only included the positive, non-

zero observations (Model 2). Ideally, a zero-inflated multilevel linear regression would have been 

used to combine these two models, however that is technically tedious with Stata, the statistical 

program that we used, and the combination of Model 1 and Model 2 is an appropriate substitute 

for a zero-inflated model (Rodriguez, 2018).  
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Table 1 Model design 

 Model 1 Model 2 Model 3 Model 4 

Model type Logit  Linear Linear Linear 

Dependent 
variable 

Likelihood of at 
least one e-

scooter present 

Average 
number of e-

scooters 

Change (absolute value) 
in the average number of 

e-scooters between 
current and previous 

hour 

Coefficient of variation* 

Omission 

 

 

None 

Observations 
with no e-
scooters 
present 

Observations with change 
in the average number of 
e-scooters per hour before 

and for the hour of 
observation  equal to 
zero; 12AM – 1AM 

observations 

Observations with the 
coefficient of variation, 
standard deviation and 
average equal to zero; 

12AM – 6AM observations 

Temporal unit Hour (144) Hour (144) Hour (138) Day (6) 

Spatial unit Fishnet (1,671) Fishnet (1,308) Fishnet (1,306) Fishnet (1,297) 

Number of 
observations 

240,624 78,260 75,044 5,539 

Bootstrapping Yes Yes Yes No 

Notes 

  
Since the days that the 
data was collected over 

were not consecutive, the 
hour from 12AM – 1AM 
of each day was omitted 

Did not consider 12AM – 
6AM for each day because 

e-scooters are typically 
charged overnight; the 

weather variables used in 
this model were averaged 

throughout the day 

*The coefficient of variation is defined in the description of Model 4 above 
 
 

3 RESULTS AND DISCUSSION 

3.1 SUMMARY STATISTICS  

The summary statistics for the variables, both explanatory and dependent are presented in 

Table 2 and are distinguished between categorical variables, where the frequencies are 

summarized, and continuous variables where the mean, minimum, and maximum values are 

presented.  Due to the difference in the number of observations included in each model, the 
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tabulations and means of the variables vary slightly between models. Out of the entire sample of 

observations spanning over 144 hours for 1,671 fishnets, 32.52% (78,620) contained an e-

scooter. Of the observations where e-scooters were present, the average number of e-scooters 

present in each fishnet was 3.33 per hour. For every observation that had a different average 

number of e-scooters per hour per fishnet than the previous, the average absolute change in the 

number of e-scooters per hour was 0.82. Lastly, the average coefficient of variation for fishnets 

that contained e-scooters throughout the study time was 1.54 on a daily basis. Interestingly, the 

maximum coefficient of variation was 4.24, which indicates that at some point during the day, 

there may have been over four times as many e-scooters (averaged for the hour) in a specific 

fishnet than the average number of e-scooters for the day. 
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Table 1 Summary statistics 

 Percent of observations     
Categorical Variables Model 1 Model 2 Model 3 Model 4   
Weekend Day 33.33 31.20 31.16 32.48   
12AM - 6AM 25.00 23.25 19.96 N/A  

 
6AM - 12PM 25.00 23.79 24.81 N/A  

 
12PM - 6PM 25.00 25.89 27.00 N/A  

 
6PM - 12AM 25.00 27.07 28.23 N/A  

 
Low Income Area 58.23 55.03 55.02 56.42   
Low-Med. Income Area 24.96 32.10 32.10 28.20   
High-Med. Income Area 12.09 12.36 12.37 14.30   
High Income Area 4.73 0.51 0.51 1.08   
Part of the CBD 5.21 15.09 15.11 9.42   
Part of a College Campus 7.60 12.33 12.36 10.92   
Part of a National Park 45.60 48.39 48.40 46.33 
Contains a Bicycle Lane 23.76 44.21 44.21 36.14 
Dependent variable = presence of e-scooters 32.52 N/A N/A N/A 
Continuous Variables Mean Min. Max. 
Census Tract Population Density (1000s) 8.44 12.92 12.91 11.10 0.00 66.79 
Number of Museums 0.05 0.13 0.13 0.09 0.00 5.00 
Number of Marketplaces 0.07 0.15 0.15 0.12 0.00 3.00 
Number of Bars & Restaurants 1.24 3.21 3.21 2.16 0.00 40.00 
Number of Bus Stops 1.96 3.08 3.08 2.69 0.00 19.00 
Number of Metro Stations 0.02 0.06 0.06 0.04 0.00 2.00 
Number of Parking Meter Spaces 0.48 1.38 1.37 0.87 0.00 182.00 
Number of Capital Bikeshare Stations 0.18 0.43 0.43 0.30 0.00 3.00 
Temperature (Celsius) 16.35 16.44 16.52 17.44 8.84 29.34 
Precipitation Intensity (mm/hr) 0.07 0.06 0.06 0.06 0.00 2.03 
Humidity (0-1) 0.87 0.87 0.87 0.86 0.36 0.97 
Wind Speed (km/h) 8.65 8.70 8.82 9.56 0.00 20.86 
Dependent variable = average number of e-scooters/hour N/A 3.33 N/A N/A 0.08 79.92 
Dependent variable = change in number of e-scooters hour to hour N/A N/A 0.82 N/A 0.00 39.42 
Dependent variable = coefficient of variation in e-scooter presence N/A N/A N/A 1.54 0.02 4.24 
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The average hourly difference in the number of e-scooters, averaged for each of the fishnets in 

the study area is graphed in Figure 5. The first hour of the day, 12AM – 1AM is excluded for 

each day for consistency since not all of the days are consecutive. An increase in the average 

number of e-scooters per fishnet overall compared to the hour before can be observed before the 

morning peak, in the early morning of each day. A decrease in the average number of e-scooters 

per fishnet overall compared to the hour before can be observed in the afternoon and evening. 

 

Figure 5 Average hourly difference in number of e-scooters across study area 

 

3.2 REGRESSION RESULTS  

The regression results are presented in Table 3 where they are discussed individually for each 

model.  

Model l: Presence of e-scooters 

We found that the likelihood of at least one e-scooter being present in an area for a given 

hour decreased on a weekend compared to a weekday which may be due to more individuals using 
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e-scooters for their commute. Compared to the evening (6PM to 12AM), the likelihood of e-

scooter presence decreased late at night (12AM – 6AM) and during the morning (6AM – 12PM). 

This finding could imply that e-scooters were likely to be used in the evening where not only 

would they be used for commuting, but for leisure activities too. Population density was linked 

with an increase in the likelihood of e-scooter presence as supply of e-scooters is dependent on the 

surrounding population. Compared to a high-income area, low-, low-medium, and high-medium 

income areas were linked to higher likelihoods of e-scooter presence where the likelihood was 

highest for high-medium income areas. This could be related to the geographic locations of the 

different income groups where the presence of e-scooters shown in Figure 2 coincides with areas 

of low- and medium-income areas presented on the right in Figure 3. Being close to marketplaces, 

restaurants and bars, as well as being located in the CBD and near college campuses increased the 

likelihood of e-scooter presence. This is expected, as attractive destinations prompt a larger e-

scooter presence. The presence of bus stops, bikeshare stations, and bicycle lanes in a fishnet 

increased the likelihood of e-scooter presence, which is consistent with existing research about 

dockless bikeshare (Shen et al., 2018). However, the number of metro stations was not significant 

in this model despite the highly positive odds ratio. On the other hand, parking meter spaces, as a 

proxy for the presence of cars, decreased e-scooter presence, indicating that e-scooters may have 

been prevalent in more walkable areas.  

Model 2: Average number of e-scooters 

The second model builds upon the results from the previous one to examine the 

determinants of the number of e-scooters in an area. The number of e-scooters was fewer during 

weekends than on weekdays. Fewer e-scooters were observed late at night but more in the 

afternoon compared to the evening. The higher number of e-scooters present in the afternoon could 
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show that a greater concentration of individuals may use e-scooters for commuting compared to 

individuals who use them for leisure in the evening. Population density was positively correlated 

with the number of e-scooters present. A low-medium income area was associated with more e-

scooters. The presence of museums, restaurants and bars, as well as being located in the CBD and 

national parks were positively associated with the number of e-scooters but the presence of 

marketplaces had a negative association. Perhaps places with a high density of marketplaces (i.e. 

commercial centers) are located in more residential areas than the central region where 

marketplaces are more spread out (see Figures 3 and 4). The presence of transport infrastructure 

was positively associated with e-scooters except for parking meter spaces, where a negative 

association was observed, and bicycle lanes, which was not significant.  

Model 3: Hourly change in average number of e-scooters 

The difference in the average number of e-scooters present by the hour implies the 

movement of e-scooters. Less hourly change in the number of e-scooters (less movement) was 

observed on weekends, illustrating that the movement of e-scooters was not only less frequent, but 

also more consistent from hour-to-hour on weekends than weekdays. A decrease in hourly bicycle 

flows to and from bikeshare stations was similarly observed on the weekends in Imani et al. (Imani 

et al., 2014). There was also less movement late at night as expected. As population density 

increased, hourly e-scooter movements also increased (but to a small degree). Density of museums 

and restaurants and bars increased e-scooter movements as these are locations of interest or located 

in areas where more movements are expected (e.g. areas that are denser like commercial areas). 

Similar reasoning can be extended to areas in the CBD. Imani et al. also observed the positive 

impact of the CBD and density of restaurants on bicycle flows (Imani et al., 2014). Being located 

in a national park also increased e-scooter movements but this may be attributed to the location of 
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some parks close to the CBD, which prompted more e-scooter use (see Figure 4). The density of 

metro stations per fishnet increased hourly changes in the number of e-scooters, which Imani et al. 

similarly found to be the impact of metro stations near bikeshare stations (Imani et al., 2014). 

Perhaps evidence of first-mile last-mile trips was observed as more e-scooter movements were 

observed around metro stations, but this is not completely clear given the negative results from 

Model 1. In addition, the density of bikeshare stations as well as presence of bicycle lanes were 

associated with more e-scooter movement, which Imani et al. and Shen et al. similarly observed 

for hourly dockless bicycle flows (Imani et al., 2014; Shen et al., 2018). More intense precipitation 

and decreased temperature were associated with decreased hourly variation in e-scooter numbers, 

which Imani et al. and Shen et al. also noticed for bikeshare flows, except Shen et al. observed a 

decrease in bicycle flows with increased temperature, since their study occurred in Singapore 

(Imani et al., 2014; Shen et al., 2018).    

Model 4: Coefficient of variation  

First off, areas with lower coefficients of variation in the number of e-scooters throughout 

the day can be areas where e-scooters were constantly arriving and departing, resulting in a 

standard deviation very close to the average. On the other hand, a lower coefficient can also occur 

when there is consistently low variation in the number of e-scooters in a fishnet throughout a day. 

To differentiate between these two cases, we need to examine the impact of the covariates on the 

coefficient of variation with the results of previous models, to discern whether the variable is 

associated with constantly high variation in the number of e-scooters in an area or constantly low 

variation.  

Weekends were associated with less variation in the number of e-scooters throughout the 

day. This finding summarizes the results from Model 3 where we observed that the presence of e-
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scooters was more constant throughout a weekend day, but based on the results from Models 1 and 

2, we can also suggest that the utilization is constantly low throughout weekend days. Higher 

population density was associated with less daily variations in the number of e-scooters.  Low- or 

low-medium income areas, compared to high income, were associated with less variation which 

can also be attributed to them being centrally located where e-scooter presence was more 

consistent. More access to marketplaces, restaurants and bars was associated with less variation 

which is expected as these are destinations where individuals may arrive and/or depart using e-

scooters frequently throughout all periods of the day, and agrees with Buck & Buehler’s analysis 

of daily Capital Bikeshare trip counts (Buck & Buehler, 2012). The reasoning is similar to explain 

the lower degree of variation observed for areas located in the CBD. The presence of transport 

infrastructure also had an impact on the degree of variation in the number of e-scooters, namely, 

the number of bus stops, number of Capital Bikeshare stations and presence of a bicycle lane was 

associated with lower variation. The presence of bicycle infrastructure positively impacts the 

hourly movement of e-scooters (Model 3) and negatively impacts the coefficient of variation of 

the number of e-scooters throughout the day (Model 4), potentially because e-scooter use  increases 

near cycle infrastructure, which Buck & Buehler also observed in their study of the determinants 

of the number of bikeshare trips per day (Buck & Buehler, 2012). Although the weather variables 

were averaged for the day in this model, we can still identify the impact of temporal changes in 

weather conditions within the day because it is likely that higher daily precipitation intensity and 

wind speed were the results of sudden weather events occurring some point during the day, which 

could have prompted people to stop using e-scooters, thus increasing the coefficient of variation 

examined in this model. Interestingly, higher humidity was linked with less variation throughout 

the day.  
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Table 2 Regression results 

 

 

  Model 1 Model 2 Model 3 Model 4 

   O.R   95% CI Coef.   95% CI Coef.   95% CI Coef.   95% CI 

Te
m

po
ra

l Weekend Day 0.79 * 0.64 0.96 -0.26 * -0.47 -0.05 -0.16 *** -0.23 -0.09 -0.31 ** -0.50 -0.11 

12AM - 6AM 0.58 *** 0.47 0.72 -0.82 *** -1.04 -0.61 -0.41 *** -0.49 -0.34 N/A N/A N/A N/A 

6AM - 12PM 0.65 *** 0.53 0.80 0.21  -0.04 0.45 -0.03  -0.12 0.05 N/A N/A N/A N/A 

12PM - 6PM 0.88   0.71 1.09 0.68 *** 0.48 0.88 0.04   -0.04 0.12 N/A N/A N/A N/A 

L
an

d 
U

se
 

Census Tract Population Density (1000s) 1.13 *** 1.11 1.14 0.02 *** 0.01 0.03 0.00 ** 0.00 0.01 -0.02 *** -0.03 -0.01 

Low Income Area 9.58 *** 4.99 18.38 0.27  -0.02 0.55 0.05  -0.05 0.14 -0.39 * -0.77 -0.01 

Low-Med. Income Area 11.22 *** 5.89 21.37 0.35 * 0.06 0.63 0.09  -0.01 0.19 -0.39 * -0.78 0.00 

High-Med. Income Area 17.33 *** 8.89 33.78 0.05  -0.25 0.34 0.04  -0.07 0.14 -0.25  -0.64 0.15 

Number of Museums 1.44  0.69 2.99 0.64 *** 0.38 0.90 0.22 *** 0.10 0.33 -0.14  -0.31 0.03 

Number of Marketplaces 2.15 *** 1.56 2.96 -0.31 *** -0.45 -0.16 -0.07 ** -0.12 -0.02 -0.16 * -0.33 0.00 

Number of Bars & Restaurants 1.16 *** 1.07 1.25 0.23 *** 0.20 0.25 0.05 *** 0.04 0.06 -0.03 *** -0.05 -0.02 

Part of the CBD 25.36 *** 9.73 66.09 3.57 *** 3.25 3.89 1.00 *** 0.87 1.13 -0.63 *** -0.87 -0.40 

Part of a College Campus 2.28 *** 1.67 3.12 -0.13  -0.35 0.08 -0.01  -0.09 0.07 -0.10  -0.27 0.08 

Part of a National Park 1.12   0.96 1.30 0.14 ** 0.05 0.24 0.06 ** 0.02 0.09 0.06   -0.04 0.17 

T
ra

ns
po

rt
 

In
fr

as
tr

uc
tu

re
 Number of Bus Stops 1.26 *** 1.22 1.31 0.06 *** 0.03 0.09 0.00  -0.01 0.02 -0.02 * -0.05 0.00 

Number of Metro Stations 1.94  0.83 4.58 2.01 *** 1.46 2.56 0.51 *** 0.31 0.71 -0.20  -0.49 0.09 

Number of Parking Meter Spaces 0.96 ** 0.93 0.99 -0.02 ** -0.03 -0.01 0.00  -0.01 0.00 0.01  0.00 0.01 

Number of Capital Bikeshare Stations 3.16 *** 2.42 4.11 0.83 *** 0.64 1.03 0.19 *** 0.14 0.25 -0.30 *** -0.42 -0.19 

Fishnet contains a Bicycle Lane 2.73 *** 2.30 3.24 0.02  -0.07 0.12 0.08 *** 0.04 0.12 -0.21 ** -0.34 -0.09 

W
ea

th
er

 Temperature (Celsius) 1.02   1.00 1.04 -0.04 *** -0.07 -0.02 0.01 * 0.00 0.02 0.02 * 0.00 0.03 

Precipitation Intensity (mm/hr) 0.85  0.64 1.13 0.05  -0.28 0.38 -0.14 ** -0.23 -0.04 1.76 *** 0.78 2.74 

Humidity (0-1) 2.60 * 1.00 6.73 2.36 *** 1.48 3.23 0.18  -0.12 0.47 -1.44 *** -1.98 -0.89 

Wind Speed (km/h) 0.99   0.97 1.01 0.03 ** 0.01 0.04 0.01   0.00 0.01 0.03 *** 0.02 0.04 

  Constant 0.00   0.00 0.00 -1.02   -2.11 0.07 -0.09   -0.45 0.28 3.34   2.77 3.92 

  Number of observations 240624 78260 75044 5539 

 Log Likelihood -72397.3 -209009.5 -125327.300 -8175.5956 

 Interclass correlation 0.6754269 0.1784231 0.0754403 0.4344523 

 Akaike's information criterion 144844.6 418071.1 250706.6 16397.19 

  Bayesian information criterion 145104.3 418312 250946.5 16549.44 

 *p<0.05 **p<0.01 ***p<0.001                 
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3.3 DISCUSSION OF RESULTS 

 Compared to weekdays, there were fewer e-scooters detected and less change in the 

numbers of e-scooters present on weekends as well as late at night. The population density of an 

area had an overall positive impact on e-scooter presence, the number of e-scooters present, and a 

small increase in the variation in e-scooter presence, as well as a low variability in the number of 

e-scooters in the area throughout the day, which is reasonable because the supply of e-scooters 

relies on the neighboring population. Lower income areas were associated with greater e-scooter 

presence and variation (activity) compared to high income areas. This trend might be influenced 

by the fact that the high-income neighborhoods are located on the outskirts of Washington D.C. 

This is further supported by the observations that e-scooters, which can cost between $2.90 and 

$4.90 for a ten-minute trip in Washington D.C. and on average cost $3.50 per trip, are a relatively 

expensive mode of transport compared to public transport, where a metro trip can cost between 

$2.00 and $6.00 (Lazo, 2019; NACTO, 2019; Washington Metropolitan Area Transit Authority, 

2020). Thus, the impact of income itself was difficult to isolate because of its association with 

location due to the use of median household income at the neighborhood level, rather than the 

income of the e-scooter rider. The models showed a significant impact of the CBD on e-scooter 

presence and movement, potentially because the increase in accessibility to opportunities in the 

CBD creates demand for e-scooters as well as supply from more users in the area. The impact of 

other notable land uses such as national parks and college campuses on e-scooter presence and 

variation in presence was less clear.  

The number of bus stops in an area had a significant impact on e-scooter presence but the 

variation in e-scooter presence near bus stops was low. This could be because areas with a higher 

density of bus stops are more likely to be located near or around the CBD where there are more 
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public transport corridors serviced by buses. Metro stations increased the average number of e-

scooters in an area and the amount of e-scooter movement to and from the area, but was not a 

significant determinant of whether or not an e-scooter would be presented in an area (refer to 

Model 1). Although there seems to be some sort of connection between public transport and e-

scooter presence, it is not totally clear whether e-scooters served as first-mile last-mile solutions 

in this study. The consistent association between Capital Bikeshare stations and e-scooter presence 

and movement indicate that e-scooters may have been often available near bikeshare stations. 

Thus, Capital Bikeshare stations could be an intuitive place for riders to park e-scooters or for e-

scooter companies to place e-scooters. The positive impact of the presence of a bicycle lane on e-

scooter presence and movement, and the fact that there was little variation in the presence of e-

scooters near bicycle lanes indicate that there could be an association between bicycle lanes and 

e-scooters. The models suggest that e-scooters were available near bicycle lanes, which could 

mean that e-scooter users ride on bicycle lanes and park them at a point between their destination 

and the bicycle lane. 

The models showed an association between temperature and e-scooter movement, which 

could be because daily temperature is typically highest in the afternoon which coincided with the 

time of day that was most associated with increases in numbers of e-scooters. Further, rain events 

were shown to increase the variation in e-scooter supply and decrease e-scooter movement. The 

models suggest that e-scooters were consistently available in humid weather conditions. 

4 CONCLUSIONS 

This study investigated the impact of time, land use, and transport infrastructure on e-scooter 

presence and variation of e-scooter presence in Washington D.C. E-scooter location data was 

collected for six days, which was used to generate four multilevel mixed effects regression models 
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to investigate e-scooter presence (likelihood of there being an e-scooter and the number of e-

scooters present) as well as the variation in number of e-scooters present between consecutive 

hours and throughout the day. 

 The limitations of this study include the fact that it is based on Washington D.C. and thus 

its findings should not be applied to all other places where shared e-scooters are being operated. 

Rather, it is fitting to consider these results applicable to urban settings that have similar transport 

systems, built environment components, and sociodemographic attributes in both scale and 

character. Additionally, the dataset cannot address whether the e-scooter was placed in a location 

as part of a rebalancing effort by the company or as the result of a trip by a user. This inability to 

reliably distinguish if an e-scooter placement was the result of rebalancing or use limits the 

interpretation of the results, as we could not differentiate between a company’s interpretation of 

where e-scooters are used and where riders actually use them. This study was also limited by the 

fact that it took place during six days in spring, and thus did not include other weather extremes 

such as colder temperatures or snow. Additionally, since the sample represented six non-

consecutive days of data, there could have been a circumstance that occurred on one of those days 

which impacted e-scooter presence that is atypical or not always present. Another limitation of this 

study is the size of the fishnets which were used as the geographic unit of analysis relative to how 

far people might travel to access an e-scooter or walk after dropping it off to their next destination. 

It is important to note the information related to e-scooters posted on the DDOT website was not 

consistent, some companies posted only their name and location of the e-scooters and others added 

the e-scooter IDs. The absence of the e-scooter IDs made it impossible to generate an origin-

destination matrix for the analysis of trips including all e-scooter companies. As a result, only the 

presence and absence of e-scooters in an area could be studied. Entering the full information about 
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each e-scooter, including if it was placed by a rebalancing effort or user, by all companies should 

be the best practice in the future to allow researchers to study them to assist policy-makers in their 

decision-making process.   

Next steps for future research would include using trip information instead of e-scooter 

location information. Additionally, the models could be further adjusted by including distance to 

the CBD (rather than including location in the CBD as a dummy variable), and distance to the 

nearest metro station. Another next step to refine the models would be to incorporate the road 

network in order to capture the impact of block length, type of street, and intersection density on 

e-scooter distribution. Further, the Moran statistic or spatially autoregressive models could be used 

to further explore spatial auto-correlation in the data (Woudsma et al., 2008). In the future, models 

could also be tested with different sized geographic units of analysis than the fishnets used in this 

study. Future research could also include origin-destination analysis for the data scraped from 

companies with reliable e-scooter IDs. Lastly, the level of detail for temporal unit of analysis in 

Model 3 could be increased in order to examine movement to and from fishnets at a finer scale. 

 This study contributes to a more comprehensive understanding of the factors that impact 

the presence as well as variation in the presence of e-scooters in a given area using data obtained 

for e-scooters operating in Washington D.C. In doing so, the distribution patterns are revealed 

which can contribute to how city planners and officials understand the ways shared electric e-

scooter are used and how they interact with existing transport infrastructure and systems. 

Namely, since e-scooters were found to be highly utilized near cycle infrastructure and in areas 

with higher population density, policymakers and engineers can encourage e-scooter use 

strategically (i.e. – to relieve congestion or public transit) by implementing cycle infrastructure 

such as bike lanes or cycle tracks where that is needed, and in higher population density areas. 



37 
 

This study also contributes a framework for collecting e-scooter data and studying the 

determinants of e-scooter distribution. 
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