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With the spread of smartphones and mobile internet, Global Positioning System 

(GPS) data from vehicles has become widely available. This data represents a 

unique opportunity to automatically extract road network features and generate 

detailed maps that can be used in the creation of transport network models, while 

minimizing the quantity of resources usually invested in that task. Accurate 

transport network models can be used in a variety of applications either in 

transport simulation models or autonomous vehicles navigation. Although two 

relevant literature reviews were performed during the last decade, they were not 

systematic and did not explore the road network inference methods from a 

transport network modelling point of view. The objective of this research is to 

perform a systematic and reproducible literature review on the use GPS data in 

transport network modelling and provide limitations and future work to extract a 

road network representation for transport models and autonomous vehicles 

navigation. This was done by systematically examining the studies’ different 

approaches with respect to relevant criteria. Most studies produced a simple 

representation of the road network, not detailed enough for transport models. 

Other limitations were the bias introduced by the GPS sample and the 

reproducibility of the different methods.  
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1. Introduction 

Data and knowledge of detailed transport network features are important for multiple 

fields such as traditional and autonomous vehicle navigation, traffic safety, urban 

planning, and transport modelling. Although a basic road centreline network 

representation is sufficient for certain applications, other applications can require 

additional and more detailed information which is the case for transport models. In fact, 

transport models are tools developed by transport engineers and planners to help in the 

decision-making process of transport infrastructure planning. This type of model can be 

divided into three main components: supply, demand, and performance where the 

supply component is mainly represented by a detailed digital road network. It represents 

road segments as directional links and intersections as nodes. It also contains additional 

attributes used to describe road segments and intersection’ properties. For example, 

each link has a specific number of lanes, a road type, and a link performance function. 

Intersection properties are also required to indicate permitted movements, turn penalty 

functions, and traffic control type. Additionally, the road network is dynamic in nature, 

since traffic rules can prohibit a subset of road users from using a specific road lane or 

making a specific movement at an intersection, depending on a temporal criteria. 

Therefore, the modelled road network should also represent this characteristic. The 

digital road network representation is usually obtained through manual extraction or 

inference using other data sources such as satellite imagery, lidar, and vehicle imagery 

(Banqiao et al., 2020).  The high cost and labour associated to these methods is the main 

limiting factor to data quality and update frequency.  

To improve the transport network modelling process, transport modelling 

software providers have provided tools to automatically construct transport networks 

based on digital maps. While improving some aspects of the network modelling 



process, achieving a satisfactory network model quality still relies on a manual 

intervention and additional data sources to validate and input some of the essential 

attributes. For example, traffic control information at intersections, permitted 

intersection movements, and number of lanes are usually unavailable in digital maps. In 

addition, digital maps require continuous maintenance and update, which also requires 

important resources.  

Thanks to location-based services, global positioning systems (GPS) data has become 

widely available in terms of spatial coverage and sample size, providing an immense 

potential for transport network modelling. This potential lies in the possibility to 

automatically extract road network features from GPS trajectory information. GPS 

trajectory data is defined as a set of chronological location points data where each point 

is described using longitude and latitude coordinates, a timestamp, and a trip ID. 

Depending on the parameters of the GPS device recording the points, the sampling rate 

or frequency can be set in terms of time or distance. For example, the sampling rate can 

be set to record the location point every 1 sec which is equivalent to a frequency of 1 

Hz, or to record a location point every 10 meters. 

This systematic literature review explores research that used large-sample GPS 

data to automate the network construction process, by extracting road shape, topology, 

number of lanes, and permitted intersection movements. A special focus is placed on 

transport network features extraction usable for large scale transport model 

development.  

In the geography and computer science fields, extracting a road map from GPS 

data, also known as map inference, has been explored since the 1990s. Within the last 

decade, two literature reviews were published on map inference techniques using GPS 



data by Ahmed et al. (2015a) and Chao et al. (2022). Map inference can be defined as 

the process of constructing the digital road map (roads location, intersections, topology, 

connectivity, etc.) based on specific data sources such as aerial images or GPS 

trajectories. In contrast, transport network modelling requires the construction of digital 

road network model that describes the road network in detail to enable its use in 

transport modelling and simulation. 

The work by Ahmed et al. (2015a) benchmarks map inference algorithms by 

performing a comparison and evaluation using multiple GPS datasets and various 

quality measures. These algorithms have a common objective; to use GPS data points or 

trajectories as an input to create directional links and nodes representing the road 

network. The output is usually compared to a ground truth map. The algorithms were 

classified under three distinct categories based on the technique used: 1. Point 

Clustering, 2. Incremental track insertion, and 3. Intersection linking. In addition, 

algorithm performances were evaluated using four quality measures: 1. Directed 

Hausdorff distance, 2. Path based distance, 3. Shortest path-based distance and graph-

based sampling distance. This work is complemented by the book authored by Ahmed 

et al. (2015b). Although the review is insightful and comprehensive in terms of map 

inference techniques, it is not systematic and does not approach the question from the 

transport modelling point of view, which requires specific road network features to be 

included in the network model. In fact, the review does not assess if the examined 

papers are extracting network features usable for transport network modelling, such as 

turning movement permissions, intersection controls, or the number of lanes available 

for traffic. In addition, it does not discuss the reproducibility of the different works 

reviewed. Furthermore, the review does not present the necessary future work to 

improve on the techniques and extract more detailed information from GPS data. 



Finally, Given the time elapsed since 2015 and the increasing availability of GPS data 

in recent years, an updated review of the work is beneficial to explore new work. 

More Recently, the literature review by Chao et al. (2022) explored more recent 

studies in the map inference context. Their focus was placed on the proposition of a new 

categorization of algorithms while assessing the existing map inference quality 

measures and the effect of GPS errors on the inference results. They proposed to 

classify map inference algorithms as: 1. Road abstraction, 2. Intersection linking and 3. 

incremental branching. Despite a minor change in the category names, these categories 

are not significantly different from the ones proposed by Ahmed et al. (2015a) and do 

not change the classification of the different algorithms. In addition, the work identifies 

the best algorithms in terms of scalability, accuracy, and suitability to update. This 

review is not systematic and does not discuss map inference from the transport 

modelling point of view. Thus, it cannot assist in determining which technique is 

preferred to extract network features for transport modelling. In fact, the review focuses 

on the performance of the available algorithms and does not present future works 

required to be able to extract more detailed network features from GPS data.  

Although past literature reviews are a good place to explore the work done in 

map inference, it was usually performed from the optic of the geography and computer 

science fields. Overall, there was no discussion about the ability of current algorithms to 

extract more detailed network features or the necessary research towards this objective. 

The literature review method performed in both works was not systematic, thus not 

reproducible. Finally, past literature reviews provide limited guidance for transport 

modelers in selecting the best techniques to model road networks or in determining 

future work. Therefore, the contribution of this work is to build on previous research by 

developing a systematic and reproducible literature review that informs the reader of the 



work done in the map inference field and the additional work required to be able to 

extract detailed road network features to support in transport network modelling. 

2. Methods 

To systematically review all relevant research while ensuring a high level of 

reproducibility of this research effort, this work was inspired by the Preferred Reporting 

Items for Systematic Reviews and Meta-Analyses (PRISMA, 2015). This technique 

requires the presentation of the study identification process, clearly indicating the 

sources and the screening steps and justifications. The research scope design, including 

objective, input and output data, and inclusion and exclusion criteria are presented 

below. 

2.1 Search criteria 

The objective of the studies had to be development of inference techniques of road 

network features based on regular / commodity GPS data. This excludes the use of high 

precision GPS or differential GPS, which is not feasible for large scale applications. 

Studies in the fields of geography, computer science, and transport planning and 

engineering using GPS points or trajectories as the main input regardless of the data 

collection device (in-vehicle, smartphone, etc.) were included. All studies aiming to 

construct (infer) a road network were included. The final output had to be a map of the 

road network. Only English and French publications were selected given the authors’ 

language abilities. If an author produced multiple publications, only the most recent was 

selected. In addition, only publications from the last 10 years were included (2012-

2022). Publications without full texts were discarded.  



2.2 Search strategy 

The search strategy was developed by the authors in consultation with the librarian 

associated to the Civil Engineering department. Multiple trial searches were conducted 

to determine all synonyms. These trials were critical to the keyword selection as this 

research effort included different fields of research that do not use the same 

terminology. For example, the main research objective could be called network 

modelling, map inference, map generation, map construction, or map extraction 

depending on the research field (computer science, geography, or transportation 

engineering and planning). The chosen keywords were then selected and searched in the 

following bibliographic databases: Scopus, Web of Science, Compendex, and Transport 

Research International Documentation (TRID). The searches were performed on 

February 24th, 2022. The exact keyword specification is presented below:  

("GPS") AND ("network inference" OR "inference of network" OR "network 

extraction" OR “extraction of network” OR "network mining" OR “mining of 

network” OR "network generation" OR “Generation of network” OR "Road 

extraction" OR “Extraction of Road” OR "Road inference" OR “Inference of road” 

OR "Road Mining" OR “mining of road” OR "map extraction" OR “extraction of 

map” OR "map inference" OR “Inference of map” OR "Map mining" OR “mining 

of map” OR "lane reconstruction" OR “reconstruction of lane” OR "intersection 

reconstruction" OR “Reconstruction of intersection” OR "lane mining" OR 

“mining of lane” OR "intersection mining" OR “Mining of intersection” OR "lane 

inference" OR “inference of lane” or "intersection inference" OR “Inference of 

intersection” OR "intersection detection" OR “detection of intersection”) 

2.3 Selection of studies 

Following the removal of duplicates, the titles and abstracts were screened 

systematically by the author using the Rayyan web platform (Ouzzani et al., 2016). The 

full texts of the remaining publications were retrieved for an in-depth selection 



assessment. Finally, all studies respecting the inclusion criteria stated above were 

selected for data extraction and further analysis.  

2.4 Data Extraction 

A global extraction form was developed and used to systematically extract all relevant 

information from the publications. The form was then used to analyse all studies on the 

same standardized basis. This form was completed by the author and contained, when 

available, the following information: author, year, title, journal / conference, study 

setting (country, city), field of study, research question, sample description, comparative 

methods, techniques used, detailed output, coverage, validation, comprehensibility, 

reproducibility, and limitations. 

3. Results 

Following the keywords’ selection, the database search identified 500 publications. 

Duplicate articles and publications before 2012 were removed. The title and abstract of 

the remaining 158 articles were screened, resulting in the exclusion of 110 articles. The 

final screening step was the full report retrieval and examination of the 48 publications. 

Following the screening process, 17 articles were included in this literature review. 

Reports were excluded when the research paper was a literature review, a book, not 

building a road network, requiring additional resources such aerial images, newer work 

was published by the same author, or the GPS sampling frequency was greater than one 

minute. Figure 1 presents a breakdown of the search and screening process. 

A summary of the selected papers is presented in Table 1. It can be noted in the 

Journal/Conference column that most of the work done is in the field of geography and 

computer science. As for the experimental data that was tested, it was mainly collected 

in the United States and China. The main research question for all the studies was the 



construction of a road network using GPS points or trajectories as input, by developing 

different algorithms and methodologies that can outperform previous research efforts. 

Out of the 17 studies, the most popular approach is clustering (n = 11). The 

intersection linking approach is the most recent to be explored by researchers (n = 4). 

Finally, the least popular approach is track alignment (n = 2). 

This work presents the different publications by approach as in Ahmed et al. 

(2015a). The selected studies are summarized in the following section under each of 

these approaches. The summarized information relates to the following elements: a) 

road network definition (network components, directionality, number of lanes, and 

turning movement permissions), b) output quality (if and how the output quality was 

evaluated), c) experimental data characteristics (sample size, sampling rate, collection 

method, and coverage), d) method clarity and reproducibility (if the article is sufficient 

to understand the method and be able to reproduce it.).  

The discussion goes further by analysing the results from a transport network 

model point of view and presenting the opportunities for further research to extract road 

network features. 
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Figure 1. PRISMA diagram - Study identification process
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Paper Journal / Conference Data Location Research question(s) Approach 
Guo (2021) Geo-spatial Information Science Wuhan, China Develop a novel method of extracting road maps from floating car data. Clustering 
Chen (2021) ISPRS International Journal of Geo-

Information 
Shenzhen, China Automatically generate road maps. Clustering 

Zhang (2020) ISPRS International Journal of Geo-
Information 

Shenzhen, China Incrementally extract urban road networks from spatio-temporal trajectory 
data. 

Clustering 

Arman (2020) Procedia Computer Science Antwerp, Belgium Identify lanes on highway segments based on Mobile Phone GPS. Map inference: 
Intersection Linking 
Lane detection: Gaussian 
Mixture Model 

Zhang (2019) ISPRS International Journal of Geo-
Information 

Chicago, USA and 
Wuhan, China 

Intersection-first approach for road network generation based on low-
frequency taxi trajectories. 

Intersection Linking 

Leichter (2019) Applied Sciences-Basel Joensuu, Chicago, 
Berlin, Athens 

Fast and straightforward method for the extraction of road segment shapes 
from trajectories of vehicles. 

Track alignment 

Hashemi (2019) IEEE Transactions on Intelligent 
Transportation Systems 

Cary, USA, and 
Beijing China 

Automatic inference of road and pedestrian networks from spatial-temporal 
trajectories. 

Clustering 

Daigang (2019) ISPRS International Journal of Geo-
Information 

Chicago, USA and 
Dongguan, China 

Two-stage approach for inferring road networks from trajectory points and 
capturing road geometry with better accuracy. 

Clustering 

Zhongyi (2018) ISPRS International Journal of Geo-
Information 

Nanning, China A road network generation method based on the incremental learning of 
vehicle trajectories. 

Track alignment 

Stanojevic (2018) SIAM International Conference on Data 
Mining 

Doha, Qatar and 
Chicago, USA 

Inferring the road network of a city from crowd-sourced GPS traces. Clustering 

Ezzat (2018) Journal of Computational Science Cairo, Egypt A clustering-based technique to extract the road map from GPS tracks. Clustering 
Dorum (2017) ACM SIGSPATIAL International 

Conference on Advances in Geographic 
Information Systems 

San Francisco and 
Knoxville, USA 

A comprehensive end-to-end unsupervised method based on principal curves 
for creating bi-directional road geometry from sparse probe data yielding a 
complete double-digitized road network from raw probe sources without prior 
map information. 

Clustering 

Li (2016) ACM International on Conference on 
Information and Knowledge Management 

Chicago, USA and 
Porto, Portugal 

A Spatial-Linear Clustering (SLC) technique to infer road segments from GPS 
traces. 

Clustering 

Jia (2016) ISPRS International Journal of Geo-
Information 

Chicago, USA and 
Wuhan, China 

A new segmentation and grouping framework for road map inference from 
GPS traces. 

Clustering 

Xingzhe (2016) ISPRS International Journal of Geo-
Information 

Chicago, USA A method to infer the topology of the road network through intersection 
identification, and to extract the geometric representation of each road segment 
by track alignment. 

Intersection Linking 

Elleuch (2015) INNS Conference on Big Data Tunisia Infer the geometry of road maps in Tunisia and the connectivity between them. Clustering 
Karagiorgou (2012) International Conference on Advances in 

Geographic Information Systems 
Athens, Greece, Automatic road network generation algorithm that takes vehicle tracking data 

in the form of trajectories as input and produces a road network graph. 
Intersection Linking 

Table 1. Summary of findings



3.1 Clustering approach 

This method uses GPS points or segments to fit the road centreline according to the data 

density distribution. Two main methods are used to cluster GPS data. The first covers 

the entire region with a grid and computes the GPS data density for each grid cell. 

Based on that information, it is possible to infer road segment or intersection locations. 

An example of density-based clustering is the Kernel Density Estimation (KDE) method 

used by Chen et al. (2021). 

The second method clusters the GPS data by averaging it based on proximity 

and direction criteria to determine road segments and intersections. Examples of this 

method are the k-means algorithm used by Stanojevic et al. (2018) and the Density-

Based Spatial Clustering of Applications with Noise (DBSCAN) used by Ezzat et al. 

(2018). Eleven publications are classified under this approach of map inference. A 

summary of the experimental data description and validation results of these papers is 

presented in Table 2. The data collection method provides information regarding how 

the GPS trajectory data was collected, for example, it could be collected using GPS-

enabled smartphones, commercially available GPS devices, or in-vehicle GPS trackers. 

Moreover, the GPS trajectory data sample size, which is the number of collected GPS 

points, is also presented in the table to give an idea about the scale of the sample. 

Finally, it is important to mention that sampling rate, or the frequency at which GPS 

points are collected during a trip, has a direct influence on the resolution of the GPS 

trajectory data and it is also reported in Table 2. 

In network modelling, a detailed network model is essential to ensure the correct 

connectivity, topology, and capacity of roads and intersections. Therefore, road 

direction, turning movement permissions at intersections, and number of lanes are 



essential features to know. Research effort by Elleuch et al. (2015) has simply created 

an undirected road network without formally creating road segment and intersection 

representations. The produced shape of the road network is insufficient for use in road 

network modelling since it is missing most of the basic essential details, such as 

connectivity and topology. Meanwhile, several research efforts go further by generating 

directional road segments and intersection location (Chen et al., 2021; Ezzat et al., 

2018; Guo et al., 2021; Y. F. Zhang et al., 2020). However, none of the studies 

implementing a clustering approach extract an explicit representation of intersection  

Paper Sample Description 
(Location, Collection Method, Sample 
Size, Sampling Rate) 

Validation Results 

Guo (2021) Wuhan, China, 
GPS device by researchers, 
1.4 million points, 
20 to 60 seconds 

Intersection Detection:     Precision: 0.914 - 0.929 
                                       Recall: 0.787 - 0.975 
                                      F-score: 0.846 - 0.951 
Road centerline extraction: Precision: 0.754 - 0.802  
                                          Recall: 0.805 - 0.812 

Chen (2021) Shenzhen, China, 
Taxi GPS, 
75 million points, 
26 seconds 

Road centerline extraction:   Precision: 0.966 
                                          Recall: 0.943 
                                          F-score: 0.850 

Zhang (2020) Shenzhen, China, 
Taxi GPS, 
1.2 million points, 
60 to 100 seconds 

96% of extracted road length fell within 15m buffer 
w.r.t. ground truth 

Hashemi (2019) Cary, USA, and Beijing China, 
N/A, 
Multiple datasets, 
9 to 40 seconds, 

Completeness, Precision, and Topology Correctness 
Variable results reported for 33 datasets 

Daigang (2019) Chicago, USA and Dongguan, China, 
University Campus Shuttles and taxis, 
respectively, 
118364 and 280253 points, respectively, 
3.61 and 50.13 respectively 

Length of extracted road:  83.6% - 87.4% 
Precision: 0.78 
Recall: 0.6 
F-score: 0.68 

Stanojevic (2018) Doha, Qatar and Chicago, USA, 
Fleet of vehicles with GPS-enabled 
devices. 
5.5 million and 200 000 points, 
respectively, 
N/A 

Geometry: F-score: 0.53 - 0.60  
Topology: F-score: 0.80 to 0.85 

Ezzat (2018) Cairo, Egypt, 
Two user contributed datasets, 
302 000 and 12.7 million points, 
11 to 15 seconds and 1 to 3 seconds 

Precision: 0.92 
Recall: 0.68 
F-score: 0.79 

Dorum (2017) San Francisco and Knoxville, USA, 
Commercial fleets and consumer 
devices, 
43 million and 850 million points, 
respectively, 
N/A 

Link Count % (reported per road type) 65% - 98.6%  
Link Length % (reported per road type) 71.9% - 
99.4% 

Li (2016) Chicago, USA and Porto, Portugal, 
University Shuttles and Taxis, 
respectively, 
118 000 and 296 573 points respectively, 

Precision: 0.68 - 0.98 
Recall: 0.45 - 0.65 
F-Score: 0.56 - 0.78 



Paper Sample Description 
(Location, Collection Method, Sample 
Size, Sampling Rate) 

Validation Results 

3.6 seconds and more than 15 seconds, 
respectively 

Jia (2016) Chicago, USA and Wuhan, China, 
University Shuttles and Taxis, 
respectively, 
118 000 and 350 000 points respectively, 
3.6 seconds and more than 37.4 seconds, 
respectively 

Precision: 0.902 - 0.975 
Recall: 0.679 - 0.734 
F-Score: 0.775 - 0.838 

Elleuch (2015) Tunisia, 
GPS receivers in 10 000 vehicles, 
> 100 Gb, 
N/A 

N/A 

Table 2. Clustering approach - sample description and validation results 

movements nor have they developed a lane-level road network, essential in determining 

the network’s vehicular capacity.  

Although researchers are continuously improving map inference techniques to 

obtain higher quality results, input data characteristics remain a main determinant of 

output quality. The variety of data sources used in the 11 studies makes it difficult to 

compare them and determine the best map inference method. This is caused by the 

differences in GPS data collection devices (in-vehicle, GPS enabled smartphone, GPS 

tracker, etc.), differences in sampling rates, differences in the number of points or 

trajectories available, and differences in collection environments (various levels of GPS 

signal interference and availability). For Example, Chen et al. (2021) uses a dataset of 

75 million points collected by taxi GPS devices in Shenzhen, China with an average 

sampling rate of 26 seconds, while one of the two datasets used by Daigang et al. (2019) 

is composed of 118 000 points collected by university shuttles in Chicago, United States 

at an average sampling rate of 3.6 seconds. The same algorithm applied to both datasets 

can result in different output quality levels. GPS data used in most of the studies was 

obtained using GPS-equipped taxis or shuttles, which introduces bias by not 

representing an average motorist’s behavior. In the case of shuttles, this bias can be in 

terms on spatial coverage since they have fixed routes and might also be permitted to 

drive on private roads such as campuses. Thus, the inferred map based on this data 



might not reflect the whole network available to all motorists. Additionally, shuttles 

usually have a fixed schedule and cannot provide a good temporal coverage of all 

periods of the day. On the other hand, GPS-equipped taxis can have an adequate 

temporal coverage, however, some road networks have dedicated lanes and turning 

permissions for taxis to encourage their use. Therefore, this introduces some spatial bias 

if the extracted network is to be used by a private motorist.  

In the study by Elleuch et al. (2015), insufficient information was provided 

regarding the experimental data. In parallel, some researchers have used well known 

benchmark datasets to enable the comparability of their algorithm’s performance. For 

example, some researchers have evaluated the execution of their algorithms on the 

Chicago dataset (Daigang et al., 2019; Jia & Ruisheng, 2016; Li et al., 2016; Stanojevic 

et al., 2018). However, this dataset is obtained from university shuttles and has spatial 

and temporal limitations. 

The most common evaluation method, initially introduced by Biagioni and 

Eriksson (2012), was the harmonic mean of precision and recall, also known as F-score 

or F-value. It is calculated as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑
 

𝑅𝑒𝑐𝑎𝑙𝑙
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑁𝑜𝑡 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑
 

𝐹 𝑠𝑐𝑜𝑟𝑒 2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙

 

where Correctly Extracted + Incorrectly Extracted = Extracted or inferred network 

elements and Correctly Extracted + Not Extracted = Ground Truth. A higher F-score 

(closer to one) indicates a better inference and match to the ground truth. Typically, the 

ground truth was selected to be an open-source map from Open Street Maps, a road map 

that relies on the public for update. Using it as the ground truth assumes that does not 



contain errors, which is not always true. Therefore, this introduces a bias in the output 

quality measurement. 

Distance and direction angle thresholds are used to determine if two elements 

(road segments or intersections) match. In addition, the sampling can be in terms of 

points or entire segments. For example, Li et al. (2016) samples every segment (or link) 

while Biagioni and Eriksson (2012) sample points throughout the inferred and ground 

truth networks. Eight papers out of eleven use this indicator to quantify the output 

network quality, while Dorum (2017) and Y. F. Zhang et al. (2020) only report recall 

values. Recall values are unable to quantify the number of network elements that were 

incorrectly extracted. The study by Elleuch et al. (2015) does not report any quantitative 

measures, which does not allow the author to assess the output quality.  

The output quality assessment was also reported for different threshold values 

with lower thresholds making the ground truth matching stricter. This explains the 

different values presented for precision, recall, and F-score for a given method. 

As presented in Table 2, the method proposed by Chen et al. (2021) for 

centerline extraction achieved the highest F-score (0.850), followed closely by Jia and 

Ruisheng (2016) (0.838). Meanwhile, the method proposed by Daigang et al. (2019) 

resulted with the lowest F-score (0.68).  

Overall, F-score is found to be the best indicator method output quality since it takes into 

account the number of correctly extracted, incorrectly extracted, and not extracted 

network features. 

Most studies are easy to read and understand and graphics, tables, and GIS 

components are relatively well presented (Dorum, 2017; Ezzat et al., 2018; Guo et al., 

2021; Jia & Ruisheng, 2016; Y. F. Zhang et al., 2020). However, only the works by 

Hashemi (2019) and Ezzat et al. (2018) are presented in a reproducible fashion. 



3.2 Intersection linking approach 

This approach divides the network inference process into two main steps: 1) 

detecting intersections using the GPS data, for example, based on turning angles, 2) 

using GPS trajectories to link the intersections together and form a network.  

This technique can be seen in (Karagiorgou & Pfoser, 2012; Xingzhe et al., 

2016; C. Zhang et al., 2019). A variation is presented by Arman and Tampere (2020) 

where intersections are determined by finding merge and diverge locations. In fact, this 

paper also uses the Gaussian Mixture Method to estimate the number of lanes based on 

the distribution of GPS points within a road segment.  

Four publications are classified under this approach of map inference. A 

summary of the experimental data description and validation results of these papers is 

presented in Table 3. 

Paper Sample Description 
(Location, Collection Method, Sample Size, 
Sampling Rate) 

Validation Results 

Arman (2020) Antwerp, Belgium, 
Mobilis smartphone app, 
21 100 trajectories, 
1 second 

On average within 4% in term of speed 
and 14% in term of lane share w.r.t 
ground truth 

Zhang (2019) Chicago, USA and Wuhan, China, 
University Shuttles and Taxis, respectively, 
118 364 and 800 000 points respectively, 
3.6 seconds and more than 40 seconds, 
respectively 

Intersection Detection: 
more than 90% 
Road centerline extraction:  Precision: 
0.932-0.980 
Recall: 0.704 - 0.886 
F-score: 0.820 - 0.908 

Xingzhe (2015) Chicago, USA, 
University Shuttles, 
118 000 points, 
3.6 seconds 

Intersection Accuracy:  
F-Score: 0.02 - 0.91 
Connectivity Accuracy: F-Score: 0.19-
0.95 

Karagiorgou (2012) Athens, Greece, 
GPS devices, 
N/A, 
30 seconds 

Shortest paths comparison 

Table 3. Intersection linking approach - sample description and validation results 

The intersection linking approach has the advantage of explicitly defining 

intersections by default, since it is the first step of the method. The four papers produce 

a directional road network. While three of the methods infer road centerlines, the work 

by Arman and Tampere (2020) is the only one to propose a method that determines the 



number of lanes. Intersection movements are only determined using the methods 

proposed by Karagiorgou and Pfoser (2012) and Xingzhe et al. (2016).  

Different GPS data sources were used to propose intersection linking map 

inference methods. The Sampling rate varies between one second and thirty second in 

the works by Arman and Tampere (2020) and Karagiorgou and Pfoser (2012), 

respectively. Meanwhile, Xingzhe et al. (2016) and C. Zhang et al. (2019) use the same 

benchmark dataset, which enables their comparability. It is important to note that the 

work by Arman and Tampere (2020) limits the experiment to a small section of a 

highway corridor. This is insufficient to determine if the proposed method will perform 

well in more complex environments. 

Network inference quality was evaluated using three different methods. Arman 

and Tampere (2020) compared the results with speed and count data while Karagiorgou 

and Pfoser (2012) used a shortest path based distance. In fact, this measure computes 

the shortest path distance for a set of OD pairs for both inferred and ground truth maps. 

The similarity between these distances indicates a similarity between the two maps in 

terms of geometry and connectivity. This method is not deterministic and can lead to 

false similarity conclusions. The final two papers by Xingzhe et al. (2016) and C. Zhang 

et al. (2019) use the harmonic mean of precision and recall, to assess the output quality. 

Both methods produce a very good F-score (>0.90), however, the method proposed by 

Xingzhe et al. (2016) has a high variability in the output quality. In terms of clarity, 

methods proposed by Karagiorgou and Pfoser (2012) and C. Zhang et al. (2019) are 

well explained. However, only the work by Karagiorgou and Pfoser (2012) contains 

sufficient details to be deemed reproducible. 

3.3 Track alignment approach 

Map inference using track alignment incrementally adds GPS tracks to an initially 



empty map. This approach can also be seen as an incremental averaging of the GPS 

tracks. Two publications are classified under this approach of map inference. A 

summary of the experimental data description and validation results of these papers is 

presented in Table 4. 

The proposed methods focus on extracting a directional road network, 

represented by the centerline of the road. Therefore, intersections are not formally 

defined, and the number of lanes information is not determined. 

In Zhongyi et al. (2018), experimental GPS data is obtained from a logistics 

company trucks. The use of truck GPS data can introduce a bias in terms of road 

coverage, as trucks are usually limited to drive on a subset of the entire road network 

due to their size, nuisance, and material they transport. The work by Leichter and 

Werner (2019) does not specify the experimental data details. In fact, this paper was 

written as part of competition oriented towards map inference algorithms efficiency and 

speed.  

The inferred map quality was not evaluated by Zhongyi et al. (2018) since no 

ground truth was available. Meanwhile, Leichter and Werner (2019) evaluated the 

quality of inferred map using the HC-SIM, which measures the overlap of two lines 

(inferred and ground truth). An HC-SIM measure of 0.612 was obtained which ranked 

this method among the best in the competition. The explained methods lack some 

details to be fully understandable. The work by Leichter and Werner (2019) does not 

present the algorithm, while Zhongyi et al. (2018) does not present sufficient 

description, figures, and diagrams. Therefore, none of the two works is reproducible. 

Paper Sample Description 
(Location, Collection Method, Sample 
Size, Sampling Rate) 

Validation Results 

Leichter (2019) Joensuu, Chicago, Berlin, Athens, 
N/A, 
Multiple datasets, 
N/A 

HC-SIM of around 0.66 



Zhongyi (2018) Nanning, China, 
Logistics company trucks,  
451 537 points, 
10 seconds 

N/A (no ground truth) 

Table 4. Track alignment approach - sample description and validation results 

4. Discussion 

A detailed road network representation is essential for multiple tasks such as traditional 

navigation, autonomous vehicle navigation, and transport modelling. A transport model 

relies on the road network model as one of its main components. In more detail, the 

road network representation needs to accurately depict the road’s geographic location, 

direction, type, number of lanes, connectivity, and intersection control type, and 

permitted turning movements. Additionally, the actual road network is dynamic in 

nature, since traffic rules can prohibit a subset of road users from using a specific road 

lane or segment or making a specific movement at an intersection, depending on the 

temporal criteria. Therefore, the modelled road network should also consider this 

characteristic.  

The reviewed studies demonstrate that research has been carried out on the topic 

of road network feature extraction. This review found that two main approaches are the 

most popular: clustering and intersection linking, as can be seen in tables 3 and 4. They 

can reconstruct a road network model from GPS data with high accuracy (Guo et al., 

2021). However, it is not possible to conclude if one approach is better than the other 

since within one approach, different methods achieve different accuracies. Moreover, 

different methods have used GPS data from different sources and different validation 

methods which makes them not directly comparable. Although this study allowed the 

identification of limitations in current methods towards building transport models 

usable in transportation engineering, it can be said that methods are available to use 



large spatiotemporal coverage GPS trajectory dataset to extract road network centreline 

and topology. 

The reviewed research used multiple measures to evaluate the accuracy of the 

constructed networks in comparison to ground truth maps. The most relevant and 

common measure was the F-score introduced by Biagioni and Eriksson (2012). It 

evaluates the similarity between the extracted network and the ground truth by relating 

the number of correctly extracted features, with the number of incorrectly extracted 

features and the number of unextracted features. Although these findings are a good 

basis for road network features extraction from GPS, the following limitations were 

noted and need to be addressed in future research to be able to extract road network 

models usable in transport modelling and autonomous vehicle navigation: 

 The constructed network is only a representation of directed road centrelines, 

and intersection locations. This level of detail is insufficient for road network 

model requirements as described above. 

 Given the multitude of GPS data sources used in past research to extract network 

features, it is impossible to select the best method simply based on the F-score. 

In fact, GPS data used in the studies was obtained via shuttles, taxis, trucks, 

fleets, researcher initiative, or crowdsourcing. This results in variable 

spatiotemporal sampling characteristics rendering a direct comparison of the 

results impossible. Ideally, all methods should be evaluated using the same GPS 

sample and compared to the same ground truth.  

 Not all GPS data sources provide the same level of road network 

representativity. For example, using GPS data collected by a specific fleet such 

as trucks, transit vehicles, or shuttles introduces bias with respect to the type of 

roads or routes that are permitted for them. Multiple studies used university 



shuttles to extract road network features, the most recent being the effort by 

Daigang et al. (2019). This limits the coverage of the extracted network features 

to fixed routes or road types.  

 Several studies were found to be irreproducible since the method is not clearly 

detailed or due to data unavailability. 

These limitations need to be addressed to extract road network features with 

sufficient detail for use in transport simulation models.  The following steps can help 

achieving this goal and contribute to the current research: 

 The use of large GPS datasets collected by light private vehicles to reduce the 

road network coverage bias.  

 The development of methods to extract road segment related features from GPS 

data such as road type, posted speed, and number of lanes.  

 The development of methods to extract intersection related features from GPS 

data such as turning movement permissions and control type.  

 The consideration of the dynamic nature of the road network which affects road 

segment or intersection related variables. 

 Making detailed and reproducible methodology available for future researchers 

to build on.  

5. Conclusion 

This paper extends past literature reviews by viewing the map inference problem from 

the transport network modelling point of view. The search strategy was shared to render 

the search reproducible. It has been found that two main approaches are popular to 

extract network features from GPS data. However, the extracted output is limited to the 



road centreline, including directionality, and intersection locations. It was also found 

that the main accuracy indicator used to assess the similarity between the extracted 

network and the ground truth is the F-score. Additionally, some of the reviewed 

methods achieve high, but improvable accuracy.  

GPS data, depending on its sampling coverage and frequency is rich and can be 

further explored to extract more detailed road network features. For example, future 

research can explore the extraction of road segment type, posted speed and number of 

lanes in addition to intersection control type and turning movement permissions. Being 

able to extract all road network features required for large scale transport modelling 

from GPS data will be of immense value as it will improve model quality and update 

frequency while reducing the required resources. Such data will be valuable for accurate 

navigation systems of automated vehicles. 
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