
Global Positioning System Data to Model Network-Wide Road Segment 1 

Level Number of Lanes Using Spatial Analysis and Machine Learning 2 
 3 
Adham Badran a*, Ahmed El-Geneidy b, and Luis Miranda-Moreno a 4 
a Civil Engineering Department, McGill University, 817 Sherbrooke Street West, Montreal, H3A 0C3, Canada 5 
b School of Urban Planning, McGill University, 815 rue Sherbrooke West, Montreal, H3A0C2, Canada 6 
* Corresponding Author 7 
 8 
Contact: adham.badran@mail.mcgill.ca, Department of Civil Engineering, McGill University, 817 9 
Sherbrooke Street West, Montreal H3A 0C3, Canada. 10 
 11 
 12 
Word Count: 5363 13 
 14 
Submitted on July 27th, 2023 15 
 16 
 17 
 18 
 19 
 20 
 21 
For Citation Please use:  Badran, A., El-Geneidy, A., Miranda-Moreno, L. (2024). Global positioning 22 
system data to model network-wide road segment level number of lanes using machine learning. Paper 23 
presented at the 103rd Transportation Research Board Annual Meeting, Washington DC, USA. 24 



Badran, El-Geneidy, and Miranda-Moreno 

2 
 

Abstract 1 
One of the main features required in transport network modelling is the number of lanes used to 2 
estimate the road capacity and predict vehicular travel times based on traffic flows. Traditionally, 3 
the number of lanes information is collected manually or more recently extracted using computer 4 
vision techniques, which are two resource intensive methods. This research proposes the use of 5 
emerging crowd-sensed Global Positioning System (GPS) data to predict the number of lanes per 6 
road segment for large scale transport models through geographic operations and machine 7 
learning. The developed method consists of i) a spatial analysis to analyze the GPS trajectory data 8 
and estimate predictors and ii) a supervised machine learning model development to build a model 9 
able to predict the number of lanes per road segment.  10 
It was found that the method predicts the number of lanes at an accuracy of 91% using two 11 
predictors: number of GPS points per road segment and a lateral distance variable containing 60% 12 
of the GPS data points, centered around the lateral distance distribution median. The best 13 
prediction model was obtained using decision trees classifier. It was also found that most of the 14 
local roads did not have sufficient data points to obtain a stable lateral distance distribution, 15 
therefore, the model was limited to a subset of road segments with sufficient observations. Given 16 
the availability of high spatiotemporal coverage GPS data, the method can be adapted and applied 17 
to large scale road network models and predict the number of lanes accurately and cost-effectively.  18 
 19 
Keywords: Global Positioning System, Transport Model, Road Network, Number of Lanes, Road 20 
Capacity, EMME. 21 
 22 

Introduction 23 
Knowledge of the number of lanes on road segments within the transport network is essential for 24 
the planning and operation of the transport system. For example, conventional and autonomous 25 
vehicle navigation, transport modelling and simulation, road safety applications all require the 26 
number of lanes information as an input. In fact, lane-level digital maps are critical for advanced 27 
driver assistance systems and continuous research is being performed to improve their 28 
development (Guo et al., 2016). Moreover, autonomous vehicle navigation requires prior 29 
knowledge of the road network in addition to real-time detection of the road lanes to select the 30 
trajectory appropriately (Bounini et al., 2015). In transport modelling, the number of lanes 31 
information is essential for all modelling scales. Macroscopic models include the number of lanes 32 
information into volume-delay functions to determine the road’s vehicular capacity and evaluate 33 
road segment level travel time. Meanwhile microscopic transport models consider the number of 34 
lanes through lane changing models (Treiber and Kesting, 2013). Another example is the use of 35 
the number of lanes when analyzing pedestrian-vehicle interaction at crossings and the relationship 36 
with road-user safety (Kadali and Vedagiri, 2020). 37 
The challenge in obtaining the number of lanes information is for large-scale road networks and 38 
maps. In fact, at large scales, the required resources to develop and maintain detailed digital 39 
networks become significant which renders the manual development infeasible. With the advances 40 
in technology, new data sources and techniques are emerging and present a potential to extract 41 
transport network-related information. Global Positioning System (GPS) trajectory data is being 42 
collected by different organizations through GPS-enabled smartphones and stored on servers using 43 
cellular internet. For example, the city of Montreal has provided its residents a smartphone 44 
application that records their trajectories for a limited period to analyze the trajectory data and 45 
improve transport planning and reduce traffic delays (Montréal).  46 
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Extracting the number of lanes has been tackled in the past using different data sources. The most 1 
frequent method to extract the number of lanes for large-scale networks is based on aerial imagery 2 
and computer vision techniques. Multiple studies have been looking at extracting road network 3 
features automatically using different data sources. First, high-resolution imagery, in combination 4 
with computer vision methods have enabled the large-scale detection and extraction of road 5 
network-related attributes. One of the research groups has done extensive work using road 6 
segmentation to detect different visible features such as the road, sidewalks, vegetation, buildings, 7 
and cars to augment OpenStreetMap by adding more features (Mattyus et al., 2015). The main 8 
challenges were found to be the presence of trees, shadows, cars, as they increase heterogeneity in 9 
the images in addition to misalignment issues with respect to the road centreline file used as a 10 
priori of road segments’ location. The same research group further expanded the analysis by 11 
collecting and incorporating street-level imagery in the number of lanes recognition algorithm 12 
which increased its prediction accuracy (Máttyus et al., 2016). Recognizing that collecting street-13 
level imagery presents high collection and processing costs, they proposed a more resource-14 
friendly version that only employs satellite imagery but takes advantage of new methodological 15 
advances in deep learning to improve the model accuracy (Máttyus et al., 2017). Another study 16 
has also extracted the number of lanes information from satellite imagery using an SVM classifier 17 
for lane identification based on brightness levels. Although they predicted the number of lanes at 18 
an accuracy of 100%, the experiment was only presented for six road segments (Tang et al., 2014). 19 
Although satellite imagery has been used to detect the number of lanes and improved by collecting 20 
street level high-resolution imagery, it is not without limitations. Data availability is limited due 21 
to the collection costs, moreover, occlusions, illumination variability and unmarked road lines 22 
reduce the capacity of such techniques (Kasmi et al., 2018). The best number of lanes prediction 23 
accuracy obtained was 83 %. 24 
Recent research efforts have been studying the extraction of road networks from GPS data using 25 
different spatial analysis algorithms. Three main approaches were used to extract road networks: 26 
Clustering, intersection linking, and track alignment. For example, the work by Guo et al. (2021) 27 
proposes a clustering method to extract road network centreline and intersections with the accuracy 28 
of 92%. Clustering is in fact the most popular method to extract road networks from GPS trajectory 29 
data. Another study by Zhang et al. (2019) employs the intersection linking method to detect the 30 
road network and intersections at an accuracy greater than 90%. Although not very popular, studies 31 
by Leichter and Werner (2019) and Zhongyi et al. (2018) have also used the track alignment 32 
method to generate road networks. However, accuracy was either low or not compared to the 33 
ground truth. Although these road network inference methods are able in some cases to extract the 34 
road network centreline and intersections with high accuracy, they do are not designed to extract 35 
more detailed road network features such as the number of lanes.  36 
Very few studies have examined the use of sole GPS trajectory data to extract the number of lanes. 37 
A study by Arman and Tampere (2020) proposes a method that extracts lane locations on a highway 38 
corridor. However, the number of lanes extracted is not explicitly validated by comparing to the 39 
ground truth. Therefore, no accuracy was provided. One attempt by Zhang et al. (2010) used GPS 40 
traces and a road centreline map from OpenStreetMap to improve the map quality and estimate the 41 
number of lanes. The main limitation was the assumption of normal distribution of GPS traces 42 
with respect to the road centre, which is not the case and resulted in number of lanes prediction 43 
accuracy of less than 60%.  44 
Moreover a study by Chen and Krumm (2010) fits Gaussian mixture models to GPS trajectory 45 
data to determine the number of lanes. Although the study attempts to preserve the continuous 46 
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nature of road segments, it is limited by the sample size and the fact that this method requires prior 1 
knowledge of the number of Gaussian distributions to fit. Thus, the study resulted in relatively low 2 
accuracy predictions.  3 
In sum, the main limitations of past studies extracting the number of lanes are the high cost of 4 
imagery data collection and the output accuracy. In fact, the high cost reduces the frequency of 5 
map updates which can result in maps not representing the continuously evolving nature of the 6 
road network. In addition, the output accuracy of past studies can potentially be improved by using 7 
large-scale GPS trajectory data. 8 
Considering the general availability of road centreline data or algorithms to infer them from 9 
different data sources, the objective of this study is to propose a method that uses GPS trajectory 10 
data to extract the number of lanes with a relatively high accuracy. This is done through spatial 11 
analysis of GPS trajectory points to extract variables that feed into a machine learning 12 
classification algorithm that predicts the number of lanes for road segments for use in large-scale 13 
transport models. 14 
 15 

Methodology  16 
GPS data treatment can be divided into two main parts based on the analysis type. The first part of 17 
the analysis was the spatial analysis using Geographic Information System (GIS) software carried 18 
out in the FME software. This software was selected since it is a very efficient data integration 19 
platform capable of managing, combining, and transforming big data with advanced spatial data 20 
analysis capabilities. The second step was the number of lanes prediction model development and 21 
visualization carried out in MATLAB. The general assumption of this study is that although GPS 22 
accuracy is between 7 and 13 meters (Merry and Bettinger, 2019), GPS trajectory points will be 23 
distributed around the middle of traffic lanes when the sample size is large. Therefore, this method 24 
proposes to determine the distance distribution of GPS points for each directional link with respect 25 
to a reference line and infer the number of lanes based on the distribution properties through a 26 
machine learning classification method. 27 
Spatial Analysis 28 
The first step requires raw GPS trajectory data, a road network model (links and nodes), and an 29 
azimuth-direction dictionary table as input. A summary of the spatial analysis steps can be seen in 30 
Figure 1. The yellow boxes present the input data sources required to carry out the spatial analysis 31 
steps. In this study, each GPS trajectory point had two sets of longitude and latitude points; raw, 32 
and map matched coordinates, which were both used at different stages of the analysis. 33 
The process can be divided into four main steps: 1. Determine the direction of each GPS trajectory 34 
point, 2. Remove GPS trajectory points located at intersections, 3. Associate each GPS trajectory 35 
point to a directional road segment, and 4. Calculate the lateral distance between each GPS point 36 
and the reference line. The number corresponding to each step is also presented in Figure 1.  37 
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 1 

Figure 1 - GPS Trajectory Points GIS Treatment Diagram 2 

Firstly, the azimuth of each GPS trajectory point was calculated based on its location and the 3 
location of the consecutive point within the same trip. The azimuth is defined as the orientation, 4 
in degrees, between two points as the number of degrees clockwise from the north reference. The 5 
azimuth was selected as the measure to define trip segment directions and an azimuth-direction 6 
dictionary was created for that purpose as seen in Figure 2. Map matched coordinates were used 7 
to calculate the azimuth to ensure consistent direction results and remove the fluctuations found in 8 
raw GPS point data. Following the azimuth calculation for each point, the direction was calculated 9 
using the azimuth-direction dictionary.  10 
Secondly, intersection buffers were used to remove GPS points that fall within the vicinity of 11 
intersections. Given that this study aims to determine the mid-block road segment number of lanes, 12 
the GPS trajectory points in the vicinity of intersections were removed since the number of lanes 13 
near an intersection is sometimes different to allow for upstream dedicated turning lanes or 14 
downstream insertion lanes. Following visual inspection of the road network, a buffer size of 30-15 
meter radius with respect to the intersection centres was used to filter GPS trajectory points within 16 
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intersection areas. This ensured that the remaining GPS trajectory points correspond to travel 1 
within the road segment.  2 

 3 
Figure 2 - Azimuth-Direction Correspondence 4 

Thirdly, to remove noisy GPS trajectory points, a road segment (link) buffer of 15-meter radius 5 
was created to select GPS points associated to each link through nearest neighbour analysis. This 6 
buffer size was selected to ensure that the GPS points’ lateral distribution profile with the respect 7 
to the directional link is captured entirely while minimizing the number of outliers. This was 8 
validated in the following steps of the analysis by examining all lateral distance distribution 9 
histograms and kernel density estimators. The link direction was also obtained based on the 10 
azimuth to add an extra criterion when selecting the nearest neighbour and ensure that every GPS 11 
point is associated to the correct directional link.  12 
Fourthly, the shortest distance between each GPS point and the associated directional link is 13 
calculated and serves in the following step develop a number of lanes prediction model. This 14 
distance corresponds to the length of the perpendicular line, di, between the GPS location point 15 
and the directional link as seen in Figure 3. It was the main variable carried to the next modelling 16 
step.  17 

 18 
Figure 3 - Distance from Point to Link Calculation 19 
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The location of the directional link with respect to the actual road segment is approximate since it 1 
is based on a simple street centreline shapefile. Moreover, for bidirectional road segments, the 2 
links for both directions are superimposed. This was taken into account while determining road 3 
segment buffer size. 4 

Road Segment Number of Lanes Prediction Model 5 
Following spatial analysis, the second part of the method consisted of creating the number of lanes 6 
prediction model. Assuming that road segments with different numbers of lanes have different GPS 7 
trajectory data characteristics (such as spatial distribution pattern and number of points), roads 8 
with different numbers of lanes are seen as distinct categories and the question is formulated as a 9 
number of lanes classification problem. A classification model was calibrated using input variables 10 
derived from GPS trajectory points data to output the number of lanes for each road segment. For 11 
each road segment, input variables were compiled following the spatial analysis part and were 12 
used to train the model to predict the number of lanes as a categorical variable. The two main GPS 13 
trajectory points descriptors, used to derive input variables to the classification tree model, were 14 
the lateral distance di and the number of points per directional road segment. A frequency 15 
histogram and a kernel density estimator were fitted to the distance variable to visualize the 16 
distribution with respect to the reference line (directional link) and determine model parameters. 17 
First, it was observed that for some of the links, sample size was too low and resulted in unstable 18 
and unmeaningful distributions. Following inspection of the kernel density estimators and 19 
frequency histogram, the sample size was limited to a minimum of 500 GPS points per directional 20 
link to produce stable results in terms of distribution shape. Road segments with fewer GPS point 21 
observations were removed. 22 
Based on the observed distributions and preliminary tests and aiming to create variables that reflect 23 
the lateral distribution of GPS trajectory points with respect to the link, distance percentiles, dipc, 24 
were calculated for different percentiles, i, of 5%, 10%, 15%, 20%, 80%, 85%, 90%, and 95%. To 25 
standardize these values and render them comparable across different links, new variables were 26 
created by calculating the variable Dp defined as the lateral distance containing a proportion, p, of 27 
the GPS points data. Dp is calculated using lateral distance percentiles to ensure that this new 28 
variable is centred around the median distance value. The following are the lateral distance 29 
variables that were calculated: 30 

𝐷ଽ଴ ൌ 𝑑ଽହ௣௖ െ 𝑑ହ௣௖ 31 
𝐷଼଴ ൌ 𝑑ଽ଴௣௖ െ 𝑑ଵ଴௣௖ 32 
𝐷଻଴ ൌ 𝑑଼ହ௣௖ െ 𝑑ଵହ௣௖ 33 
𝐷଺଴ ൌ 𝑑଼଴௣௖ െ 𝑑ଶ଴௣௖ 34 

For example, D60 corresponds to the difference between the 80th percentile distance and 20th 35 
percentile distance, therefore it contains 60% of the GPS points data. A visual illustration is 36 
provided in Figure 4. The number of GPS points per link and the standard deviation of lateral 37 
distance per link were also calculated to be tested in the model specification. 38 
Following the creation of the variables for each road segment, supervised machine learning 39 
classification methods were tested. In fact, classification tree analysis was carried out to determine 40 
if it can create an accurate model that can be used for prediction. This method is a good option 41 
when ground truth data is available for the learning step. Moreover, it is non-parametric and does 42 
not require prior knowledge of the distribution of each variable. Another advantage of this method 43 
compared to other machine learning techniques such as neural networks classification is its 44 
transparency which makes the model easy to interpret (Ian et al., 2017).  45 
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To ensure protection against overfitting, model validation was carried out using a 5-fold cross-1 
validation. This validation method divides the dataset randomly into five groups. At each step, one 2 
of the five groups is held out to be used for validation while the other four groups are used to train 3 
the model. Once the model is specified, it is used to make predictions on the group that was held 4 
out. For a 5-fold cross validation, this process is repeated five times.  5 

 6 
Figure 4 - Example of Percentile Visualization 7 
 8 

Data 9 
Three main input datasets are used: 1) GPS trajectory points, 2) Modelled directional road network 10 
(links and nodes), and 3) Google maps and Street View. GPS data was collected during the spring 11 
of 2014 in Quebec City, Canada. It was collected for 21 days by 2000 voluntary users through the 12 
Mon Trajet smartphone app, made available by the Municipality. Each point is described by the 13 
following attributes: map matched X and Y coordinates, trip ID, speed, and timestamp (Year-14 
Month-Day-Hour-Minute-Second). Following the preprocessing steps, 245 links were selected as 15 
the experimental data to model number of lanes, which included 120 000 GPS points (excluding 16 
GPS points within the intersection buffers. This study area was selected based on its urban setting 17 
since it is in the city centre where more GPS trajectories were available. Figure 5 presents a sample 18 
of the study area where part a shows the raw GPS trajectory points, and part b shows the processed 19 
GPS trajectory points for the same road corridor following spatial analysis steps 1 to 3. In part b 20 
of the figure, GPS trajectory points are colored differently depending on the link to which they 21 
were associated.  22 
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 1 
Figure 5 - Sample of GPS Points Data in Study Area - Before and After Spatial Processing 2 

The directional road network was created using an initial road centreline shapefile which was 3 
converted in a network model compatible the EMME transport modelling software to obtain 4 
directional links and augmented using the same GPS trajectory data to ensure that road topology 5 
and connectivity are valid. Each link is defined by an origin and a destination node. The possible 6 
number of lanes per directional link was one, two, or three lanes, for which the ground truth was 7 
manually extracted using Google Maps and Street View.  8 
For a given road segment, it is important to note that the number of lanes available for traffic can 9 
vary spatially and temporally. The presence of lanes dedicated to transit vehicles or high-10 
occupancy vehicles at a fixed schedule on concerned road segments reduces temporally the number 11 
of lanes available to general traffic. This is also the case for lanes that are used for parking at fixed 12 
schedules. Throughout a road segment, the number of lanes can also change spatially. For example, 13 
it is common to see a higher number of lanes at the two extremities of a road segment to allow for 14 
traffic insertion and for dedicated turning lanes. The complex nature of traffic lanes can be seen in 15 
Figure 6 where a reserved bus lane (highlighted in green) is present at a fixed schedule and the 16 
number of lanes at the intersection level is different (usually greater) than the mid-block number 17 
of lanes to accommodate turning movement flows. This paper examines the mid-block number of 18 
lanes and does not consider reserved lanes.  19 

 20 
Figure 6 - Example of a Complex Road Geometry 21 
 22 

Results 23 
With the proposed steps and parameters, it was possible to extract GPS points for road segments 24 
and associate each point to the correct directional link based on the trajectory direction. The sample 25 
size filter limited the number of analyzed directional links included in the analysis to 43 links. The 26 
buffer sizes were also validated based on the frequency distributions of GPS points’ lateral distance 27 
with respect to the link since the entire distribution profile is captured. This can also be noted in 28 
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Figure 7 which presents the kernel density estimator fitted to the lateral distance variable 1 
distribution for six different links of varying number of lanes. The sample size, N, and the 𝐷଺଴ 2 
values are also presented for each link.  3 

 4 

Figure 7 - Sample Kernel Density Estimator of Lateral Distance for One, Two, and Three Lanes 5 
In addition to the distribution profile of lateral distance, the figure also demonstrates the significant 6 
difference in the distribution profile between links having one, two, and three lanes. Through 7 
observation, it was possible to identify that road segments with fewer lanes have lower values of 8 
N and smaller D60 values. This can be explained by the fact that roads with fewer users are designed 9 
to have fewer lanes, and GPS points are concentrated in a narrower area.  10 
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Model specification was carried out to determine the best model and best predictors for the number 1 
of lanes. Given the relatively low number of road segments, a 5-fold cross-validation method was 2 
performed to avoid overfitting the data. The highest classification prediction accuracy was found 3 
using a decision tree classifier at 91% using two predictors, the sample size N and D60. The 4 
optimizable decision tree classifier tested iteratively different numbers of splits and different split 5 
criteria to reach the minimum classification parameters and error.  6 
Figure 8Figure 9 presents a plot of the two selected predictors, showing a clear delimitation 7 
between the predictor values for roads with one, two, or three lanes.  8 

 9 
Figure 8 - D60 vs. Sample Size (N) 10 
Moreover, the optimized decision tree is presented with the three split levels and values in Figure 11 
9. Ensemble classifiers, such as boosted trees, bagged trees, and subspace discriminant were also 12 
tested to improve prediction accuracy and the best accuracy was using the subspace discriminant 13 
ensemble classifier at 91%. Given that the optimized decision tree was able to predict at the same 14 
accuracy level it was selected as the best model in this case since it is simpler to visualize and 15 
interpret.  16 
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 1 
Figure 9 - Selected Classification Decision Tree 2 

 3 

Discussion 4 
The proposed methodology predicts the number of lanes per road segment based on the number of 5 
GPS points associated to the link and the difference between the 80th and 20th percentile distance, 6 
representing a lateral distance measure centered around the median lateral distance.  7 
Given that the best prediction model was obtained using only two variables, an optimized decision 8 
tree classifier was sufficient to reach a good model accuracy (91%). However, adding new 9 
variables will require retesting ensemble classifier methods to verify if they are able to improve 10 
prediction accuracy. Moreover, to use this model, the sample size would need to be translated into 11 
relative terms or to be specified with respect to the sample size corresponding to a new dataset. 12 
The main hypothesis behind using the sample size as a variable is that for a given period of data 13 
collection where we assume a representative sample, it is expected to have a larger number of 14 
observations for road segments with a larger number of lanes since they generally have a higher 15 
traffic flow.  16 
The spatial analysis and model specification steps were limited by the experimental data available. 17 
During the study, it was found that some of the GPS points were map matched in their raw form 18 
which signifies that they were snapped to a road centreline at a step prior to accessing the data. 19 
Given that this study examines the lateral distribution of raw GPS points with respect to the road 20 
link, map matching has a negative impact on data quality. It was also noted that some links had a 21 
low number of GPS points, which resulted in unstable lateral distance distribution profiles. 22 
Ideally, larger datasets of uniquely raw GPS points need to be used to have a larger coverage to 23 
obtain more realistic distributions and potentially create more predictor variables. The objective is 24 
to have more GPS points per link, not necessarily more links as it will also become more complex 25 
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to obtain the ground truth information. An increase in the number of points per link will also 1 
increase the probability of having better coverage for different times of the day, which enables 2 
model specification for different time periods to detect the change in the number of traffic lanes 3 
temporally.  4 
Although some studies have proposed the extraction of the number of lanes using satellite and 5 
street-level imagery with a relative high accuracy, they are not without limitations (Nieroda et al., 6 
2022, Máttyus et al., 2016, Kasmi et al., 2018). In fact, the high cost of imagery data collection is 7 
an important limitation that is overcome in this study since GPS data is currently being crowd 8 
sensed by location-based applications through smartphones. Furthermore this study considers 43 9 
road links for model specification which is a larger sample than the work by Tang et al. (2014) 10 
which only considers 6 road segments for the analysis.  11 
Comparing this study to some studies using GPS data to extract the number of lanes, the prediction 12 
accuracy significantly exceeds the 60% accuracy obtained in the study by Zhang et al. (2010). In 13 
addition, the method proposed in the current study provides more accurate results and a simpler 14 
procedure than the studies by Chen and Krumm (2010) and Arman and Tampere (2020) to obtain 15 
the number of lanes for integration in large-scale transport models. 16 
 17 

Conclusion 18 
This study proposes a method to predict the number of lanes per road segment using crowd sensed 19 
GPS trajectory data as an input in addition to a simple geographic representation of the road 20 
network. The proposed framework is composed of two main steps: to predict the number of lanes 21 
of road segments using GPS trajectory data while aiming to keep the cost low and to obtain high 22 
prediction accuracy.  23 
The first step is a spatial analysis process to filter and prepare the GPS trajectory data for variable 24 
creation. Due to the noise inherent to GPS trajectory, it was crucial to ensure that raw GPS data 25 
points were filtered using buffers. This is also necessary to account for the specificities in road 26 
design and for the discrepancies in the road network geographic representation. This step also 27 
served to produce variables necessary to derive the predictors for the following step. The two main 28 
variables were the number of GPS points per road segment and the lateral distance between each 29 
point and the reference line representing the road segment. The second step is the training and 30 
validation of a machine learning method using classification tree analysis and ensemble learning. 31 
Standardized predictors were derived from the lateral distance variables to ensure that the values 32 
are comparable across different road segments.  33 
This study was able to develop a road segment number of lanes prediction model using GPS 34 
trajectory point data with an accuracy of 91% using a decision tree classifier and two predictors. 35 
This prediction accuracy is higher than prediction results obtained by previous research. This 36 
finding demonstrates that it is possible to extract the number of lanes available for general traffic 37 
by using crowd-sensed GPS trajectory data. This will facilitate road transport network model 38 
development and update. The proposed method was demonstrated using a case study in Quebec 39 
City, Canada.  40 
However, the work is not without limitations and can be further developed by having a larger 41 
temporal sample coverage to enable the prediction of the number of lanes for different periods 42 
allowing the detection of dynamic reserved lanes or parking lanes. This study used manually 43 
collected ground truth data which limited the size of the study area, network coverage for model 44 
development and validation will be increased in future works by collecting more ground truth data 45 
or obtaining this information from another source.   Moreover, it is possible to explore adding land 46 
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use variables that might be correlated with the number of lanes and help in improving the 1 
prediction model’s accuracy. The potential of this method can also be maximized by automating a 2 
procedure that can use GPS trajectory points and other basic input files to create a road network 3 
containing the number of lanes per road segment.  4 
Eventually, with the arrival of autonomous vehicles, new data sources may also be available in 5 
terms of geotagged imagery data that can be automatically collected and treated by these vehicles 6 
during their operation. These processed images may in the future be used to mine road network 7 
features at a low cost and high accuracy. 8 
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