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Columbia, Canada, is not an exception. Three urban, high-frequency, 
heavily used routes are studied to determine the effects of crowd-
ing and fare payment on dwell time. Manual counts were performed 
detailing passenger movements, fare types used, dwell service times, 
and levels of crowding.

This paper begins with a review of the current literature on dwell 
times and the factors that can affect them. The following sections 
explain the methods used to gather, clean, and interpret the data. The 
final sections analyze the dwell time model, present a sensitivity 
analysis, and provide recommendations and conclusions.

Literature Review

“Dwell time” is defined as “the amount of time a bus spends while 
stopped to serve passengers” (3). As dwell time can consume up to 
26% of the total travel time of buses, it is vitally important to under-
stand the factors that affect it in detail. By better understanding these 
factors, transit agencies can introduce changes that can help to reduce 
dwell times (1).

To truly understand the factors influencing dwell time, a more 
refined formulaic definition is needed. The following formula is 
widely used for dwell time models (3, 4).

t P t P t t t fd a a b b rlp p= + + + +oc unexp

where

	 td	=	average dwell time (s),
	 Pa	=	number of alighting passengers at stop,
	 ta	=	average passenger alighting time,
	 Pb	=	number of boarding passengers at stop,
	 tb	=	average passenger boarding time,
	 toc	=	door opening and closing time,
	 frl	=	� friction factor accounting for additional delay caused by 

interaction between number of passengers on board and 
number of passengers boarding and alighting (captures 
effect of crowding), and

	tunexp	=	� time of unexpected activities (e.g., wheelchair lift use).

The first five variables in the equation are defined in the Transit 
Capacity and Quality of Service Manual (TCQSM) and quantify how 
many passengers board and alight, the time it takes for this exchange 
per passenger, and the time it takes to open and close the door (5). This 
equation is presented in the TCQSM with the assumption that no fare 
payment is made at any door. Yet the TCQSM includes a section on 
fare payments and their effects on dwell time variations. Accordingly, 
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Dwell time, the time a transit vehicle spends stopped to serve passengers, 
contributes to the total reliability of transit service. Dwell time is affected 
by factors such as passenger activity, bus crowding, fare collection method, 
driver experience, and time of day. The types of effects crowding can have 
on dwell time are debatable because of its interaction with passenger activ-
ity and inaccuracies in its calculation. Different payment methods also 
have an effect on dwell time. This debate can be linked to the absence 
of appropriate data that can actually capture the real effects of these 
variables. This research attempts to determine the influence of crowding 
and fare payment on dwell time through manual data collection. The 
study was conducted along three heavily used bus routes in the Trans-
Link system in Vancouver, British Columbia, Canada. Multiple regres-
sion dwell time models are performed by using a traditional model and a 
new expanded model with the additional details that manually collected 
data provide. The traditional model overestimated dwell times because 
of a lack of detail in fare payment and crowding, while the expanded 
model showed that crowding significantly increased dwell time after 
approximately 60% of bus capacity was surpassed. Fare payment methods 
had various positive effects on dwell time, with different magnitudes. 
This research can help public transit planners and operators develop 
better guidelines for fare payment methods as well as policies associated 
with crowding.

As ridership grows and budgets shrink at public transit agencies 
across North America, crowding on public transit vehicles is likely to 
increase. Dwell time consumes approximately 26% of the total trip 
time and as such, longer and shorter dwells can have significant effects 
on run time variation (1). Understanding the relationship between fare 
payment, in-vehicle crowding, and dwell times will help agencies 
deliver quality public transit by improving service planning and sched-
uling. While a full bus may appear to be the epitome of efficiency, the 
additional load may cause dwell and run times to increase significantly 
(2). This research paper tries to understand how a variety of fare pay-
ment methods, crowding, and the interaction between these variables 
affect dwell times.

Crowding on buses is a challenge that many transit agencies are 
facing. TransLink, the local transit provider in Vancouver, British 
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several Pb p tb can be incorporated into this equation as needed depend-
ing on the number of fare payment types. The final two variables, frl 
and tunexp, have been added, on the basis of the literature, to create a 
more realistic model (4). The variable frl captures the effect that the 
load of the bus has on boarding and alighting passengers. Unexpected 
delays caused by wheelchair ramp use, waiting for passengers to 
board, or other delays are captured in the variable tunexp.

Electronic Data Collection

Automatic passenger counters (APCs) have been used to gather data 
remotely and inexpensively since their introduction in the mid-1970s 
(6). APCs are generally integrated with an automatic vehicle location 
(AVL) system. An AVL system is part of a larger integrated com-
munications system. The combined use of these systems provides a 
breadth of data that is unattainable with standard manual counting 
techniques. While the aggregate of these data is useful for dwell time 
analysis, there are concerns about data validity and reliability and 
loss of detail.

As of 2002, Moore et al. concluded that “there is no fully objective 
evidence that APCs can provide adequate data for section 15 reports” 
(6, p. 145). In addition, Dueker et al. mention that wheelchairs, walk-
ers, and strollers can confound APCs (4). In their study of two bus 
routes containing different APC equipment, Kimpel et al. found that 
estimates of boardings were accurate at the system level (7). How-
ever, one type of equipment overestimated boardings by a statistically 
significant margin, while APCs of both types overestimated passen-
ger loads by a statistically significant margin (7). These contradictory 
findings indicate that APC and AVL data can be good for certain types 
of analysis—such as running time models or dwell time models—that 
do not require detailed load information. In studies concentrating on 
passenger load effects, other methods such as manual counts might be 
appropriate to increase the accuracy and provide the required detail for 
developing a better model.

Crowding

Passenger crowding in public transit vehicles is difficult to define. 
Stated simply, a vehicle is in a crowded state when people on the 
vehicle impede the flow of individuals boarding and alighting. Dueker  
et al. define a crowded vehicle as such when its load is greater than 
85% of total capacity (4). Milkovits asserts that crowding occurs 
when the number of passengers on board is greater than the number of 
seats (8). A study concentrating on dwell times for the Massachusetts 
Bay Transportation Authority’s Green Line light rail system found 
that dwell time is affected by the number of passengers boarding 
and alighting and the number of people on board the vehicle (2). To 
account for the effect of crowding some studies included a friction 
variable. Friction is a compound variable that attempts to incorporate 
the effects of crowding and the number of passengers boarding and 
alighting. Friction was included in studies by Dueker et al. (4) and 
Tirachini (9).

Fare Payment

The method and location of fare payment can have a significant effect 
on dwell time. Different fare media types also have different effects. 
Passengers that pay with cash when change is given have the largest 

effect on dwell time, while fare that is merely shown to operators (not 
swiped or tapped) has the smallest effect (8). A passenger that pays 
with a magnetic stripe ticket adds less time to the dwell compared with 
passengers using cash when no change is given (9). Electronic smart 
media cards were reported to be faster than magnetic stripe tickets. 
However, the difference was negligible with the presence of crowding. 
More detailed analysis is needed to better understand the effects of 
these fare payment methods on dwell time, especially when combined 
with crowding information.

Methodologies

In collaboration with TransLink, the local transit authority serving the 
Vancouver region, three urban, high-patronage routes that experience 
crowding on a regular and sustained basis were chosen for study. 
The routes were the Number (No.) 5, No. 9, and No. 99 (Figure 1).  
All three traverse dense residential and commercial areas and inter-
sect with rapid transit lines. The No. 5 and No. 9 are local service 
routes and operate identical low-floor trolley buses. The No. 99 B-line 
is an express bus with more than 50,000 boardings per day and oper-
ates articulated low-floor buses. Table 1 includes a summary of the 
characteristics of the studied routes.

Data Collection

Manual observations of passenger movement, fare payment methods, 
and crowding were collected with permission from TransLink and its 
subsidiary bus operations company, Coast Mountain Bus Company. 
The data were collected from April 12 through May 12, 2012. To best 
capture the effects of crowding, data were collected predominantly 
during the morning (7 to 10 a.m.) and afternoon (3 to 6 p.m.) peak hour 
periods and a random sample of runs was surveyed during those times. 
This study relies on manual counts that collect detailed observations 
at each stop. Each bus had one person recording the passenger activity 
at every door. For example, an articulated bus had three volunteers 
recording the passenger movement and fare payment method as well 
as the status of crowding on the bus.

Before the recorders boarded the bus, the weather, temperature, 
date, and recorder’s name were documented. In addition, the record-
ers collected information from the driver concerning the driver’s 
number of years of experience and gender. Terminus stops are defined 
as the first and last stops that data collection occurred. As such, dwell 
times are not accurate because operators are required to wait for 
extended periods for scheduled departure times. Accordingly, pas-
senger counts will not correspond to the dwell time. An additional 
variable, PassServiceTime, was recorded to capture the difference 
between the time taken to serve passengers and the non-passenger-
related delays during dwell time (changing operators, waiting at 
time points, or waiting for red lights, all with the doors open). Data 
from the collection sheets were then entered into a spreadsheet for 
analysis.

To better understand the effects of fare payments and crowding 
on dwell time two statistical models are generated. The first is a tra-
ditional model that uses data similar to what is being collected by 
an APC-equipped bus. The second model is the extended one, which 
includes more detailed variables that were collected in the study. The 
extended model allows a better understanding of the different effects 
of fare policies and crowding on dwell time.
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Variable Definition

Table 2 includes a list of variables used in the statistical models. 
Most of these variables follow the traditional dwell time model known 
in the literature (10). Yet some of the variables used merit further 
explanation. PassServiceTime captures the portion of the dwell that 

is used by passengers to board or alight. Dwell_Longest captures the 
time between door open and door close. The difference between 
Dwell_Longest and PassServiceTime is Dwell_Difference. Dwell_
Difference represents the extra dwell time spent at stops that is not 
the result of passenger movements (time points, driver changes in 
the middle of the route, etc.). As buses in this study have differ-
ent maximum capacities, load (occupied capacity) was translated 
into percentage of occupied capacity, as represented by the variable 
Load_%ofBusCapacity. Standee_PAX_Interaction was created on 
the basis of previous research and measures the interaction between 
boarding and alighting passengers (PAX) and the number of standees 
[(Standees^2) p Total_PAX] (8). The number of standees was deter-
mined by subtracting the total number of people on board from the 
number of seats on the bus.

Data Cleaning

Data from the collection sheets were entered in their entirety, regard-
less of whether dwells or passenger movements had occurred. As 
such, data for the dwell time model required extensive cleaning. Stop 
level data entries were removed in instances in which Total_PAX = 0 
or Dwell_Longest = 0. These removed data did not contain passen-
ger movements or dwell time information. Terminus stops were also 
removed in this step as they generally have extra time. Entries were 
also removed in instances in which the recorder labeled the entry as 
inaccurate. Total boardings and alightings were checked for entire 
runs. If passenger activity did not balance (number of boardings in 

TABLE 1    Physical Characteristics of Routes 5, 9, and 99

Route (westbound)

Statistic
No. 5 
Robson

No. 9 
Broadway

No. 99 
B-Line

Length (km) 3.4 6.9a 16.2

Number of stops 15 31a 13

Headway peak (min) 5–7 4–5 2–4

Headway off peak (min) 7–8 11–12 4–5

Daily boardings  
(Monday–Friday)

9,400 25,300 54,350

Annual boardings 3,167,000 8,298,000 16,642,000

Service type Local Local Express

Population (within 400 m 
of route)

42,000 79,000 68,000 

Employment (within  
400 m of route)

105,000 68,000 58,000 

Note: Based on 2011 data. 
aSection of route under study.

FIGURE 1    (a to c) Studied bus lines and (d) Vancouver context.

(a)

(b)

(c) (d)
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a run equals number of alightings), then all dwells during this trip 
are removed from the analysis. The final data set used in the analysis 
contained a total of 1,764 dwells.

Analysis

Assessing dwell times on the basis of the average time required for 
a passenger to board or alight shows that there is a distinct differ-
ence between crowded and noncrowded conditions and between 
the different routes analyzed. Dwell time per passenger movement 
(Dwell_Time/PAX) was determined by dividing PassServiceTime 
time by the maximum passenger movements, boardings and alight-
ings, at any door. As can be seen in Table 3, crowded conditions, 
defined as loads exceeding 70% of bus capacity, show an increase 
in service time per passenger of from 3.69 to 5.35 s on the No. 5 
(a 1.66 s increase) and from 3.58 to 4.06 s on the No. 9 (a 0.48 s 
increase). This result is indicative of a reduction in the efficiency 
of dwell times during crowded conditions. Conversely, the No. 99 
actually shows a decrease in passenger service time of 0.41 when 
buses are crowded. This gain in efficiency is likely attributed to an  
all-door boarding policy that drastically reduces the time required 
to serve passengers, especially when there are large passenger flows. 
Since the study was conducted during the peak period it was not 
surprising to have a low percentage of uncrowded conditions in the 
sample. Yet keeping them in the analysis is important to help control 

for any unobserved variations that the models could have missed and 
can affect the dwell time.

Dwell Time Models

By using the longest dwell at any door (Dwell_Longest) in sec-
onds as the dependent variable, two linear regression models were 
developed (traditional and expanded model). The variables and 
associated coefficient, t-statistic, and statistical significance are 
shown in Table 4. The traditional model uses the nondetailed vari-
ables to simulate APC-collected information, while the expanded 
model uses all the collected variables. Comparing these two mod-
els will enable one to show the value of obtaining such detailed 
information about every dwell and the effect of these variables on 
dwell time. The expanded model explains 86% of the variation in 
Dwell_Longest by using a sample size of 1,764 dwells, compared 
with the traditional model, which explains only 58% of the varia-
tion. The coefficients in the traditional model follow the expected 
signs, statistical significance, and magnitude. In general the model 
is comparable with previous research (4, 11). This increases the 
trust in the collected data in regard to their accuracy in predicting 
dwell time.

Moving to the expanded model, dwell times on the No. 5 Robson 
and the No. 99 B-line are 0.8 and 3.3 s longer, respectively, than 
those of the No. 9. The doors on the No. 99 B-line are controlled by 

TABLE 2    Variable Definition

Variable Name Description

Route5 Dummy equal to 1 if the trip was on the No. 5 Robson

Route99 Dummy equal to 1 if the trip was on the No. 99 B-line

Westbound Dummy equal to 1 if the trip was in the westbound direction

Driver_Experience The number of years of experience the driver has been operating the bus for TransLink

Driver_Gender Dummy equal to 1 if the drivers gender is female

AM_Peak Dummy equal to 1 if the trip began during the a.m. peak (6-9 a.m.)

PM_Peak Dummy equal to 1 if the trip began during the p.m. peak (3-6 p.m.)

Dwell_Difference Difference between Dwell_Longest and PassServiceTime

Wheelchair_Dummy Dummy equal to 1 if there was a wheelchair ramp event

Bike_Dummy Dummy equal to 1 if the bike rack was used

Stroller_Dummy Dummy equal to 1 if during the dwell, a passenger boarded with a stroller, luggage, or 
other large bags that prolonged the boarding process

D1_Prepay Front door, number of passengers that use a pass that is shown directly to driver

D1_MagneticSwipe Front door, number of passengers that use a magnetic pass, verified by fare box

D1_Cash Front door, number of passengers that pay cash at fare box, receive magnetic pass

D1_NoFarePresented Front door, number of passengers that enter without presenting fare

D1_ Boarding Front door, number of people entering at stop

D1_Alighting Front door, number of people exiting at stop

D2_Boarding Middle door, number of people entering at stop

D2_Alighting Middle door, number of people exiting at stop

D3_Boarding Rear door, number of people entering at stop

D3_Alighting Rear door, number of people exiting at stop

Total_PAX2 Total boardings and alightings at all doors, squared

Load_%ofBusCapacity Load expressed as a percentage of bus capacity

Load_%ofBusCapacity2 Interaction variable, load expressed as a percentage of bus capacity, squared

Standee_PAX_Interaction Interaction variable, standees squared multiplied by total PAX

PassServiceTime Dwell variable, only records the portion of the dwell that is used to serve passengers

Note: Dependent variable, Dwell_Longest is longest dwell at any door.
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TABLE 3    Summary Statistics at Stop Level

No. 5 Robson No. 9 Broadway No. 99 B-Line

Noncrowded Crowded Noncrowded Crowded Noncrowded Crowded

Variable Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

D1_Prepay 1.82 2.84 5.38 9.70 2.43 3.92 5.57 9.53 0.85 1.26 1.53 1.93

D1_MagneticSwipe 0.57 1.25 1.23 2.13 0.58 1.22 0.90 1.69 0.36 0.80 0.38 0.74

D1_Cash 0.22 0.56 0.38 0.96 0.15 0.46 0.07 0.25 0.17 0.48 0.23 0.52

D1_NoFarePresented 0.02 0.16 0.00 0.00 0.02 0.15 0.00 0.00 0.01 0.13 0.02 0.15

D1_Alighting 0.57 1.07 0.31 0.63 0.66 1.28 0.90 1.32 0.75 1.33 1.26 1.79

D2_Boarding 0.00 0.04 0.00 0.00 0.03 0.50 0.10 0.40 2.00 2.30 5.11 3.21

D2_Alighting 2.54 3.25 1.62 2.06 2.86 3.83 2.40 3.64 2.93 3.14 4.79 4.76

D3_Boarding na na na na na na na na 2.90 3.08 7.45 4.67

D3_Alighting na na na na na na na na 3.72 3.76 5.98 5.60

Load_%ofbusCapacity 24.72 16.25 77.31 4.79 37.81 15.20 74.53 2.70 35.71 16.74 79.17 5.81

Dwell_time/PAX 3.69 2.31 5.35 2.65 3.58 2.25 4.06 2.21 2.18 1.78 1.77 1.95

Number of dwells 562 13 689 30 423 47

Note: Crowded condition is load > 70% of capacity; SD = standard deviation; na = not applicable.

TABLE 4    Dwell Time Model

Traditional Model Expanded Model

Variable Name Coefficient t-Statistic
Statistical 
Significance Coefficient t-Statistic

Statistical 
Significance

Constant 9.417 7.607 .000 6.869 9.102 .000

Route5 −0.097 −0.148 .882 0.773 1.888 .059

Route99 0.682 0.693 .488 3.301 5.604 .000

Westbound −0.522 −0.999 .318 0.075 0.244 .807

Driver_Experience na na na −0.004 −0.193 .847

Driver_Gender na na na −0.342 −0.651 .515

AM_Peak −0.404 −0.526 .599 −0.203 −0.450 .653

PM_Peak 0.874 1.524 .128 −0.116 −0.341 .733

Dwell_Difference na na na 0.909 55.170 .000

Wheelchair_Dummy na na na 38.475 18.115 .000

Bike_Dummy na na na 3.849 2.821 .005

Stroller_Dummy na na na 5.511 4.915 .000

D1_Prepay na na na 2.226 29.245 .000

D1_MagneticSwipe na na na 3.033 19.330 .000

D1_Cash na na na 4.209 13.504 .000

D1_NoFarePresented na na na 1.568 1.526 .127

D1_Boarding 3.105 32.806 .000 na na na

D1_Alighting 1.858 7.784 .000 1.309 9.176 .000

D2_Boarding 0.598 2.189 .029 0.240 1.487 .137

D2_Alighting 0.974 8.998 .000 0.636 9.983 .000

D3_Boarding 1.456 6.722 .000 0.835 6.513 .000

D3_Alighting 0.965 5.600 .000 0.517 5.093 .000

Total_PAX2 −0.013 −6.931 .000 −0.005 −4.663 .000

Load_%ofbusCapacity −0.181 −3.004 .003 −0.062 −1.764 .078

Load_%ofbusCapacity2 0.002 2.346 .019 0.001 2.341 .019

Standee_PAX_Interaction 0.001 2.052 .040 0.001 3.694 .000

Note: For traditional model, N is 1,764 and R2 is .580; for expanded model, N is 1,764 and R2 is .860. na = not applicable.
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the driver to facilitate all-door boarding; operators waiting for pas-
sengers to clear the rear doors before closing them could contribute 
to the longer dwells on the No. 99. The direction of travel, years 
of driver experience, and driver gender did not show a statistically 
significant effect on dwell time in the sample. Dwell times are mar-
ginally faster during the a.m. and p.m. peak than during nonpeak 
times. This effect has been attributed to more regular riders using 
prepaid fare and more directional passenger traffic reducing the mix 
of boardings and alightings at the same stop (4, 11). Delay-related 
variables, wheelchair ramp events, bike rack events, and passengers 
with strollers or other bulky items, show statistically significant 
increases in dwell time. A wheelchair event adds 38.4 s to dwell 
time, which is 24.0 s faster than has previously been found (4). This 
reduction in dwell time is likely attributable to the age of the bus 
fleet. The majority of the buses in the fleet are less than 10 years 
old and all have low floors, fast ramp actuations, and efficient tie-
down systems, which reduce the time needed to serve passengers 
in wheelchairs.

As would be expected, boardings and alightings at all doors 
are associated with an increase in dwell time, while certain fare 
types have larger impacts on dwell time. All passenger movement 
variables are significant except boardings with no fare at Door 1 
and boardings at Door 2. Passengers boarding with prepaid fare are 
the fastest to board (of paying passengers) as they have no inter-
action with the fare box and only need to show their pass to the 
driver (2.2 s per passenger). Each passenger using a magnetic swipe 
ticket adds 3.0 s to dwell time, while those using cash add 4.2 s 
while keeping all other variables constant at their mean value. 
Finally, each passenger who boards through the front door and does 
not pay the fare, even though the passenger does not interact with the 
fare box or show a pass to the driver, adds 1.6 s. This finding is attrib-
uted to these passengers offering an explanation to the operator as 
to why they cannot pay. It is important to note that throughout this 
study, less than 0.5% of passengers boarded through the front door 
without paying a fare.

Passengers alighting at the front door take longer than those alight-
ing through rear doors. A passenger alighting at the front door will 
extend the dwell by 0.7 s more than one alighting through the rear 
door. Crowding and friction around the front door likely create this 
difference as passengers tend to resist moving to the back of the bus. 
It could also be attributed to the time needed to access the front door. 
Unlike the rear where passengers can wait directly adjacent to 
the doors, passengers alighting at the front door are required to wait 
behind the driver’s seat to ensure that the driver’s sight lines are not 
obstructed and until other passengers board the bus. A passenger 
boarding at Door 2 adds 0.24 s and 0.84 s boarding at Door 3. Board-
ing events at the second door occurred in less than 0.5% of all dwells 
on the No. 5 and No. 9 as boarding through the rear door is normally 
not allowed on either of these routes. Therefore, the effects of this vari-
able can be attributed almost entirely to the No. 99 B-line. The effects 
of boarding and alighting through Door 3 are entirely attributed to the 
B-line as it is the only route that uses articulated buses.

As buses in this study have different maximum capacities, the 
effect of passenger load was determined by using the percent of 
occupied capacity. A 1% increase in the passenger load of the bus 
generated a 0.06-s reduction in the dwell time. While this may seem 
counterintuitive, the coefficient of this variable must be interpreted 
together with the square term of this variable, which is Load_% 
ofBusCapacity2, as they work in tandem to affect the independent 
variable. The interaction variable, Load_%ofBusCapacity2, has 
a statistically significant positive effect. The effect of the variables 

Load_%ofBusCapacity and Load_%ofBusCapacity2 together indi-
cates that dwell times will decrease as load increases because of the 
effect of Load_%ofBusCapacity. Once a certain threshold is reached, 
the effect of the square term variable, Load_%ofBusCapacity2, will 
cause dwell times to increase.

Discussion of Results

Traditional and Expanded Dwell Time Models

By using coefficients derived from Table 4 a sensitivity analysis is 
conducted for the extended and the traditional model. The coeffi-
cients are multiplied by the mean values of each independent vari-
able in the model. The first sensitivity analysis used 11 and five 
passengers at a stop to estimate the dwell time at different levels of 
bus occupancy. Figure 2 shows the output from the first sensitivity 
analysis for traditional and expanded models while the occupancy 
of the bus is varied and the passenger activity is fixed at five and  
11 passengers per dwell.

As shown in Figure 2, the effect of PAX is apparent in the rela-
tionship between the two sets of curves. At both levels of PAX, the 
traditional model tends to overestimate dwell times at the lowest 
levels of bus occupancy. With low PAX, the dwell times predicted 
by the two models are similar. However, as passenger movements 
increase, the traditional model begins to overestimate dwell times. 
This effect results from the lack of additional passenger boarding 
detail, as provided in the expanded model. The traditional model 
uses the average boarding time for all fare types, adding 3.1 s to 
the dwell for a passenger boarding at the front door, regardless of 
payment method, while keeping all other variables constant at their 
mean value. A passenger boarding with a pass that only needed to 
be shown to the driver adds only 2.2 s to the dwell as seen in the 
expanded model. With the majority of passengers using this type 
of fare media, as PAX increases, the error in the traditional model 
increases as well.

Dwell times produced by using the traditional model are similar 
at both ends of the curve. The expanded model is different in that the 
curve is much flatter through to about 50% of capacity. This differ-
ence is expected as the variable Dwell_Difference is not included in 
the traditional model. This variable measures the difference between 
the time required to serve passengers and total dwell time inclusive 
of non-passenger-related delays. Including this variable changes 
how the variables Load_%ofBusCapacity, Load_%ofBusCapacity2, 
and Standee_PAX_Interaction affect the curve. The majority of these 
non-passenger-related delays occurred in instances in which occu-
pied capacity was less than 30%. This finding helps to explain the 
difference between the two curves at lower bus occupancy. Non-
passenger-related service delays are clearly an important compo-
nent of dwell time that is difficult if not impossible to capture with 
only APC data.

As bus occupancy increases above 50%, both models show an 
increase in dwell time. Previous research has attempted to define 
a bus occupancy threshold above which crowding begins to affect 
dwell time (2, 4, 8). The results of this research suggest that crowd-
ing, as it relates to its effect on dwell time, occurs after the bus 
passes 60% capacity. As can be seen in Figure 2, dwell time begins 
to increase more sharply after that point. A typical Vancouver 
trolley bus at 60% occupancy would have all seats occupied, and 
approximately 15 standees, which corroborates observations made 
during data collection.
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Interaction Between Passenger Movements  
and Bus Occupancy

To assess the effects of different levels of passenger movement 
on dwell time, three passenger movement scenarios, based on high, 
medium, and low PAX averages, have been analyzed (Figure 3). The 
high scenario has PAX = 36 and is based on the average of dwells 
in which the percent of occupied capacity is greater than 85%. The 
medium scenario has PAX = 13 and is based on the average boarding 
and alighting activities of dwells that occurred when the bus was at 
less than 55% of occupied capacity. For comparison, an additional low 
PAX scenario in which only one passenger is boarding with prepaid 
fare has been added. These passenger movements are analyzed over 

all ranges of vehicle occupancy. The dwell times are presented as the 
percent change in dwell time over a baseline dwell of 31% of occupied 
capacity.

Figure 3 clearly illustrates that the effect of crowding on dwell time 
is most evident when PAX is low. The dwell time associated with each 
passenger movement is very high when the bus stops for few pas-
sengers. The reason is that the constant (door open and close time) 
and crowding penalty are distributed among very few passengers. Bus 
stops that serve few passengers are the least efficient and most affected 
by crowded conditions. With large numbers of passenger movements, 
people can easily move through to the exit. Conversely, with a static 
passenger load, one individual will have much more difficulty moving 
through the crowd toward the exit.
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Passenger Movements, Fare Payment,  
and Their Effects on Dwell Time

With the use of the coefficients derived from Table 4, a sensitivity 
analysis is conducted to predict dwell times for the No. 99 B-line trav-
eling westbound with a male driver during the a.m. peak (Tables 5 
and 6). The coefficients are multiplied by the mean values of each 
independent variable in the model. These estimates are based on two 
passenger boarding and alighting scenarios, 13 and 36. By using 
these two boarding and alighting scenarios while keeping all other 
variables constant at their mean, the effect on dwell time is examined 
at 30%, 60%, and 90% of occupied capacity.

The first increase in occupied capacity, from 30% to 60%, sees 
an increase in dwell time of 1.1 s for the medium PAX scenario 
and 1.5 s for the high PAX. This represents a 5% change in dwell 
times. This increase is minor considering that the dwell penalty is 
associated with a doubling of occupancy. However, adding the next 
30% in occupied capacity increases dwell time by 4.4 s and 7 s. 
That result represents a 20% increase in dwell times regardless of 
the number of passengers boarding and alighting.

According to the results presented here, buses running above 
the 70% capacity threshold outlined in TransLink’s Transit Service 
Guidelines will run much slower than those below this threshold. Two 
interrelated factors are the cause. Buses with heavier loads experience 
larger flows of people on and off than those with smaller loads. On the 
#5, dwells with passenger loads greater than 70% saw 40% more pas-
senger movements than dwells below 70%. That rise is compounded 
by the increase in dwell time associated with crowding. These two 
factors serve to prolong dwells and slow the bus along its route. As 
Lin and Wilson found, overcrowding turns into a vicious cycle that 
only exacerbates the crowding problem, which can quickly lead to 
bunching and severely degraded service throughout the route (2). This 
is true especially on routes served by trolley buses where it is difficult 
to pass slow vehicles. On busy, high-frequency routes, focus should be 
on maintaining headways as opposed to adhering to schedules.

While pass-ups are not desirable, they occur throughout the system 
and may even be advisable when vehicles are heavily loaded and 
a stop request has not been made. Pass-ups would serve to reduce 
bunching, maintain headways, and improve reliability. With techno-
logical advances and integrated systems, the route number and desti-
nation signage on the front and side of the bus could be used to advise 
passengers of when the next bus will be coming and its approximate 
load. Other forms of social media could be implemented to alert 

passengers about crowding and possible pass-ups. Having certainty 
around the length of the delay and the likelihood of boarding the 
next bus would help reduce passenger frustration when pass-ups 
do occur.

Conclusion and Recommendations

The purpose of this research was to examine the effects of crowd-
ing and fare payment on dwell time. Remotely collected data allow 
for broad analysis; however, much of the detail during the dwell is 
lost. The manual data collection methods used in this study allowed 
for the delineation of dwell times that were passenger related and 
those that were caused by other events. The type of fare used was 
also recorded allowing for a more detailed and accurate model with 
respect to front door alightings. A traditional APC dwell time model 
and an expanded model were analyzed and compared. While both 
models showed that as the occupancy of the bus increases, dwell 
time also increases, the traditional APC model overestimated dwells, 
especially at high and low levels of bus occupancy. This difference is 
attributed to the detailed fare payment and dwell time data garnered 
through manual data collection.

When the sensitivity of dwell times to different levels of passen-
ger movements are examined, a clear distinction between different 
levels of crowding is apparent. Dwell times clearly increase with the 
number of passenger movements occurring. However, under crowded 
conditions, the time taken to serve passengers at stops with low pas-
senger movements is far greater than to serve those stops with high 
passenger movements, on a time per passenger basis. Consolidation 
of bus stops with low passenger movements on frequently crowded 
routes is recommended to reduce run time. Allowing passengers to 
board and alight through the rear doors at the busiest stops would also 
vastly improve dwell times.

Crowding begins to significantly affect dwell time after approxi-
mately 60% of occupied capacity. On the basis of that information, 
TransLink’s Transit Service Guidelines, with its maximum desired 
occupancy of 70%, appears to strike a good balance between the 
efficiency of the service and passenger comfort especially on urban 
routes. It is recommended that the type of route (regular or express 
service), the context of the route (urban or suburban), and the boarding 
and alighting activities be considered when crowding is addressed.

As the level of crowding on the bus increases, so do the asso-
ciated passenger movements during dwells. This effect serves to 

TABLE 5    Boarding and Alighting Scenarios  
for Sensitivity Analysis: No. 99 B-Line

Scenario

Variable 13 Passengers 36 Passengers

D1_Prepay 1 1

D1_MagneticSwipe 1 2

D1_Cash 0 1

D1_NoFarePresented 0 0

D1_Alighting 0 0

D2_Boarding 3 8

D2_Alighting 2 7

D3_Boarding 3 6

D3_Alighting 3 11

TABLE 6    Sensitivity Analysis: No. 99 B-Line

 Effect on Dwell Time

Scenario 30% 60% 90%

13 Passengers

Dwell time (s) 21.5 22.6 27.0

Increase in dwell time (s) 
attributed to crowding

na   1.1   4.4 

Increase (%) na   5 19

36 Passengers

Dwell time (s) 34.1 35.6 42.6

Increase in dwell time (s) 
attributed to crowding

na   1.5   7.0 

Increase (%) na   4 20
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dramatically increase dwell times on heavily loaded buses. These 
crowded buses can affect the headways of vehicles following, 
especially on high-frequency routes served by trolley buses that are 
unable to easily pass a slow vehicle. During periods of crowding, 
focus should be on maintaining headways instead of adhering to a 
schedule. In several cases pass-ups are recommended to reduce the 
likelihood that an overcrowded bus is delayed. Additional recovery 
time would need to be added to schedules to account for the effects 
overcrowding has on heavily used routes. The added recovery time 
would thus make the buses less efficient from an operation standpoint.

Fare payment methods have a substantial effect on dwell time and 
accordingly on schedules. In other words, schedulers should account 
for fare payment type and add the adequate time for every route that 
can accommodate the fare payment methods implemented by the 
agency along every route. Different fare payment methods showed a 
statistically significant positive effect on dwell time. Cash payment 
had the highest effects followed by magnetic swipe. Preboarding pay-
ments are recommended to decrease time associated with cash trans-
actions. Also flash card or tap-on technologies are recommended to 
replace the magnetic swipe to decrease the effect of monthly pass users 
on dwell time. Offboard fare collection is expected to lead to substan-
tial time savings as the no fare presented variable showed the lowest 
effect on dwell time.

This study could be expanded by looking at other services and by 
examining how the characteristics of the built environment affect 
dwell time. Stop location (near side or far side), presence of an exclu-
sive bus way or a high-occupancy lane that serves buses, and the 
location of stops in the street (whether it is in a travel lane or out of 
traffic) could be included.

With patronage on public transportation systems increasing across 
North America, continued investment is needed to accommodate this 
demand. Planners should work on finding ways to improve system 
efficiency, which will in turn reduce costs and improve service and so 
encourage more ridership. However, without investment, our transit 
systems will continue to be bogged down with crowding, experience 
reduced reliability, and provide poor customer satisfaction.
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